Federated_learning codes used for the the paper "Evaluation of Federated Learning Aggregation Algorithms" and "A Federated Learning Aggregation Algorithm for Pervasive Computing: Evaluation and Comparison"

Overview

Federated Distance (FedDist)

This is the code accompanying the Percom2021 paper "A Federated Learning Aggregation Algorithm for Pervasive Computing: Evaluation and Comparison" and the code of federated learning experiments by Sannara Ek during his master thesis.

Overview


This experiments compares 3 federated learning algorithms along with a new one, FedDist. The FedDist algorithm incorporates a pair-wise distance scheme for identifying outlier-like neurons/filters. These outlier-like neurons/filter may be in fact features learned from sparse data and so it is directly added to the server model for the next round of training.

Core Dependencies (tested and stable)


  • Tensorflow 2.2.2
  • PyTorch 1.1
  • scikit-learn 0.22.1

All the working scripts are presented in a Jupiter notebook file format.

There is an array of 3rd party packages that is necessary for the entirety of the scripts to run. It is recommended to run command "pip3 install -r requirements.txt" in your virtual environment and working directory to replicate the environments used in this experiment.

!Note! Visual Studio is required to solve dependency problems when working on a Windows Machine

Data Preparation


"DATA_UCI.ipynb" and "DATA_REALWORLD_SPLITSUB.ipynb" are respectively used to prepare the UCI and REALWORLD dataset for training. Simply run all cells in a Jupyter notebook. The formatted dataset will be placed in a new directory "datasetStand"

FL script implementations


The FedAvg and FedPer implementations are found in the file "FedAvg_FedPer.ipynb". You must specify which algorithm you which to run in the third cell of the notebook by changing the "algorithm" variable to either "FEDAVG" or "FEDPER"

FedDist is found in the "FedDist.ipynb" file.

FedMA is found in the "FedMA.ipynb" file.

For all the federated algorithms, the third cell gives a variety of options and testing environment to choose from. We recommend leaving the configuration in default other than changing the "algorithm" variable and specifying the GPU/CPU to use. Simply run all cells to start training.

If preferred to run as a python script, convert the files to a .py format VIA Jupiter notebook (FILES -> Download as -> Python (.py)).

Additionally with the command below from a console achieves the same result:

jupyter nbconvert --to script '[ScriptName].ipynb'

Simply specify the wanted parameters in the third cell beforehand.

Results Interpretability


All results of each experiments shall generate the "savedModels" folder. Within this folder will contain subfolders with the name of the chosen configuration and model architecture of the experiment. Additionally, within each model architecture folder will contain the another subfolder with the name of the dataset used for the experiment. E.g a directory should appear like:

./savedModels/FED_5C_10LE_50CR_400D_100D_BALANCED/UCI

Now within this folder:

The final server model is saved in a .h5 format. The recorded training statistics foreach communication round, such as the accuracy and loss of the clients model and server model, are stored in the trainingStats folder. The results regarding the Global accuracy and the detail of the server model can be found on the generated Server-Measure.csv file. Results for the Personalization accuracy can be found in the indivualClients Measure.csv file and finally the Generalization accuracy can be found at the AllClientsMeasure.csv file.

Sample script sequence:


An example of execution would be to first download and format the dataset (UCI and REALWORLD) then execute one of the FL algorithms (requires several days on CPU).

1.DATA_UCI.ipynb
2.DATA_REALWORLD_SPLITSUB.ipynb
3.FedAvg_FedPer.ipynb/FedDist.ipynb/FedMA.ipynb

Citing this work:


@INPROCEEDINGS{Lala2103:Federated,
AUTHOR="Sannara Ek and François Portet and Philippe Lalanda and German Vega",
TITLE="A Federated Learning Aggregation Algorithm for Pervasive Computing:
Evaluation and Comparison",
BOOKTITLE="2021 IEEE International Conference on Pervasive Computing and
Communications (PerCom) (PerCom 2021)",
ADDRESS="Kassel, Germany",
DAYS=21,
MONTH=mar,
YEAR=2021,
KEYWORDS="Federated Learning; Edge Computing; Human activity recognition"
}

Contact:


Please contact the authors by [firstname].[lastname]@univ-grenoble-alpes.fr if you have issues with the code.

To contact Sannara Ek, Please use [firstname].[lastname]@gmail.com

Owner
GETALP
Study Group for Machine Translation and Automated Processing of Languages and Speech
GETALP
Baseline powergrid model for NY

Baseline-powergrid-model-for-NY Table of Contents About The Project Built With Usage License Contact Acknowledgements About The Project As the urgency

Anderson Energy Lab at Cornell 6 Nov 24, 2022
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

Microsoft 8.4k Jan 01, 2023
Open-sourcing the Slates Dataset for recommender systems research

FINN.no Recommender Systems Slate Dataset This repository accompany the paper "Dynamic Slate Recommendation with Gated Recurrent Units and Thompson Sa

FINN.no 48 Nov 28, 2022
Convert Python 3 code to CUDA code.

Py2CUDA Convert python code to CUDA. Usage To convert a python file say named py_file.py to CUDA, run python generate_cuda.py --file py_file.py --arch

Yuval Rosen 3 Jul 14, 2021
I-BERT: Integer-only BERT Quantization

I-BERT: Integer-only BERT Quantization HuggingFace Implementation I-BERT is also available in the master branch of HuggingFace! Visit the following li

Sehoon Kim 139 Dec 27, 2022
ICLR 2021, Fair Mixup: Fairness via Interpolation

Fair Mixup: Fairness via Interpolation Training classifiers under fairness constraints such as group fairness, regularizes the disparities of predicti

Ching-Yao Chuang 49 Nov 22, 2022
Barbershop: GAN-based Image Compositing using Segmentation Masks (SIGGRAPH Asia 2021)

Barbershop: GAN-based Image Compositing using Segmentation Masks Barbershop: GAN-based Image Compositing using Segmentation Masks Peihao Zhu, Rameen A

Peihao Zhu 928 Dec 30, 2022
This script runs neural style transfer against the provided content image.

Neural Style Transfer Content Style Output Description: This script runs neural style transfer against the provided content image. The content image m

Martynas Subonis 0 Nov 25, 2021
Tiny Object Detection in Aerial Images.

AI-TOD AI-TOD is a dataset for tiny object detection in aerial images. [Paper] [Dataset] Description AI-TOD comes with 700,621 object instances for ei

jwwangchn 116 Dec 30, 2022
A high-performance Python-based I/O system for large (and small) deep learning problems, with strong support for PyTorch.

WebDataset WebDataset is a PyTorch Dataset (IterableDataset) implementation providing efficient access to datasets stored in POSIX tar archives and us

1.1k Jan 08, 2023
TensorFlow implementation of "Attention is all you need (Transformer)"

[TensorFlow 2] Attention is all you need (Transformer) TensorFlow implementation of "Attention is all you need (Transformer)" Dataset The MNIST datase

YeongHyeon Park 4 Jan 05, 2022
ViViT: Curvature access through the generalized Gauss-Newton's low-rank structure

ViViT is a collection of numerical tricks to efficiently access curvature from the generalized Gauss-Newton (GGN) matrix based on its low-rank structure. Provided functionality includes computing

Felix Dangel 12 Dec 08, 2022
RADIal is available now! Check the download section

Latest news: RADIal is available now! Check the download section. However, because we are currently working on the data anonymization, we provide for

valeo.ai 55 Jan 03, 2023
Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning (ICLR 2021)

Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning (ICLR 2021) Citation Please cite as: @inproceedings{liu2020understan

Sunbow Liu 22 Nov 25, 2022
Turi Create simplifies the development of custom machine learning models.

Quick Links: Installation | Documentation | WWDC 2019 | WWDC 2018 Turi Create Check out our talks at WWDC 2019 and at WWDC 2018! Turi Create simplifie

Apple 10.9k Jan 01, 2023
SimBERT升级版(SimBERTv2)!

RoFormer-Sim RoFormer-Sim,又称SimBERTv2,是我们之前发布的SimBERT模型的升级版。 介绍 https://kexue.fm/archives/8454 训练 tensorflow 1.14 + keras 2.3.1 + bert4keras 0.10.6 下载

318 Dec 31, 2022
Implementation of ConvMixer for "Patches Are All You Need? 🤷"

Patches Are All You Need? 🤷 This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?" by Asher

CMU Locus Lab 934 Jan 08, 2023
A Strong Baseline for Image Semantic Segmentation

A Strong Baseline for Image Semantic Segmentation Introduction This project is an open source semantic segmentation toolbox based on PyTorch. It is ba

Clark He 49 Sep 20, 2022
Stochastic Normalizing Flows

Stochastic Normalizing Flows We introduce stochasticity in Boltzmann-generating flows. Normalizing flows are exact-probability generative models that

AI4Science group, FU Berlin (Frank Noé and co-workers) 50 Dec 16, 2022
Athena is the only tool that you will ever need to optimize your portfolio.

Athena Portfolio optimization is the process of selecting the best portfolio (asset distribution), out of the set of all portfolios being considered,

Indrajit 1 Mar 25, 2022