Code for our method RePRI for Few-Shot Segmentation. Paper at http://arxiv.org/abs/2012.06166

Overview

Region Proportion Regularized Inference (RePRI) for Few-Shot Segmentation

In this repo, we provide the code for our paper : "Few-Shot Segmentation Without Meta-Learning: A Good Transductive Inference Is All You Need?", available at https://arxiv.org/abs/2012.06166:

Getting Started

Minimum requirements

  1. Software :
  • torch==1.7.0
  • numpy==1.18.4
  • cv2==4.2.0
  • pyyaml==5.3.1

For both training and testing, metrics monitoring is done through visdom_logger (https://github.com/luizgh/visdom_logger). To install this package with pip, use the following command:

pip install git+https://github.com/luizgh/visdom_logger.git
  1. Hardware : A 11 GB+ CUDA-enabled GPU

Download data

All pre-processed from Google Drive

We provide the versions of Pascal-VOC 2012 and MS-COCO 2017 used in this work at https://drive.google.com/file/d/1Lj-oBzBNUsAqA9y65BDrSQxirV8S15Rk/view?usp=sharing. You can download the full .zip and directly extract it at the root of this repo.

If the previous download failed

Here is the structure of the data folder for you to reproduce:

data
├── coco
│   ├── annotations
│   ├── train
│   ├── train2014
│   ├── val
│   └── val2014
└── pascal
|    ├── JPEGImages
|    └── SegmentationClassAug

Pascal : The JPEG images can be found in the PascalVOC 2012 toolkit to be downloaded at PascalVOC2012 and SegmentationClassAug (pre-processed ground-truth masks).

Coco : Coco 2014 train, validation images and annotations can be downloaded at Coco. Once this is done, you will have to generate the subfolders coco/train and coco/val (ground truth masks). Both folders can be generated by executing the python script data/coco/create_masks.py (note that the script uses the package pycocotools that can be found at https://github.com/cocodataset/cocoapi/tree/master/PythonAPI/pycocotools):

python

cd data/coco
python create_masks.py

About the train/val splits

The train/val splits are directly provided in lists/. How they were obtained is explained at https://github.com/Jia-Research-Lab/PFENet

Download pre-trained models

Pre-trained backbones

First, you will need to download the ImageNet pre-trained backbones at https://drive.google.com/drive/folders/1Hrz1wOxOZm4nIIS7UMJeL79AQrdvpj6v and put them under initmodel/. These will be used if you decide to train your models from scratch.

Pre-trained models

We directly provide the full pre-trained models at https://drive.google.com/file/d/1iuMAo5cJ27oBdyDkUI0JyGIEH60Ln2zm/view?usp=sharing. You can download them and directly extract them at the root of this repo. This includes Resnet50 and Resnet101 backbones on Pascal-5i, and Resnet50 on Coco-20i.

Overview of the repo

Data are located in data/. All the code is provided in src/. Default configuration files can be found in config_files/. Training and testing scripts are located in scripts/. Lists/ contains the train/validation splits for each dataset.

Training (optional)

If you want to use the pre-trained models, this step is optional. Otherwise, you can train your own models from scratch with the scripts/train.sh script, as follows.

bash scripts/train.sh {data} {fold} {[gpu_ids]} {layers}

For instance, if you want to train a Resnet50-based model on the fold-0 of Pascal-5i on GPU 1, use:

bash scripts/train.sh pascal 0 [1] 50

Note that this code supports distributed training. If you want to train on multiple GPUs, you may simply replace [1] in the previous examples with the list of gpus_id you want to use.

Testing

To test your models, use the scripts/test.sh script, the general synthax is:

bash scripts/test.sh {data} {shot} {[gpu_ids]} {layers}

This script will test successively on all folds of the current dataset. Below are presented specific commands for several experiments.

Pascal-5i

Results :

(1 shot/5 shot) Arch Fold-0 Fold-1 Fold-2 Fold-3 Mean
RePRI Resnet-50 59.8 / 64.6 68.3 / 71.4 62.1 / 71.1 48.5 / 59.3 59.7 / 66.6
Oracle-RePRI Resnet-50 72.4 / 75.1 78.0 / 80.8 77.1 / 81.4 65.8 / 74.4 73.3 / 77.9
RePRI Resnet-101 59.6 / 66.2 68.3 / 71.4 62.2 / 67.0 47.2 / 57.7 59.4 / 65.6
Oracle-RePRI Resnet-101 73.9 / 76.8 79.7 / 81.7 76.1 / 79.5 65.1 / 74.5 73.7 / 78.1

Command:

bash scripts/test.sh pascal 1 [0] 50  # 1-shot
bash scripts/test.sh pascal 5 [0] 50  # 5-shot

Coco-20i

Results :

(1 shot/5 shot) Arch Fold-0 Fold-1 Fold-2 Fold-3 Mean
RePRI Resnet-50 32.0 / 39.3 38.7 / 45.4 32.7 / 39.7 33.1 / 41.8 34.1/41.6
Oracle-RePRI Resnet-50 49.3 / 51.5 51.4 / 60.8 38.2 / 54.7 41.6 / 55.2 45.1 / 55.5

Command :

bash scripts/test.sh coco 1 [0] 50  # 1-shot
bash scripts/test.sh coco 5 [0] 50  # 5-shot

Coco-20i -> Pascal-VOC

The folds used for cross-domain experiments are presented in the image below:

Results :

(1 shot/5 shot) Arch Fold-0 Fold-1 Fold-2 Fold-3 Mean
RePRI Resnet-50 52.8 / 57.7 64.0 / 66.1 64.1 / 67.6 71.5 / 73.1 63.1 / 66.2
Oracle-RePRI Resnet-50 69.6 / 73.5 71.7 / 74.9 77.6 / 82.2 86.2 / 88.1 76.2 / 79.7

Command :

bash scripts/test.sh coco2pascal 1 [0] 50  # 1-shot
bash scripts/test.sh coco2pascal 5 [0] 50  # 5-shot

Monitoring metrics

For both training and testing, you can monitor metrics using visdom_logger (https://github.com/luizgh/visdom_logger). To install this package, simply clone the repo and install it with pip:

git clone https://github.com/luizgh/visdom_logger.git
pip install -e visdom_logger

Then, you need to start a visdom server with:

python -m visdom.server -port 8098

Finally, add the line visdom_port 8098 in the options in scripts/train.sh or scripts/test.sh, and metrics will be displayed at this port. You can monitor them through your navigator.

Contact

For further questions or details, please post an issue or directly reach out to Malik Boudiaf ([email protected])

Acknowledgments

We gratefully thank the authors of https://github.com/Jia-Research-Lab/PFENet, as well as https://github.com/hszhao/semseg from which some parts of our code are inspired.

Owner
Malik Boudiaf
Malik Boudiaf
The official start-up code for paper "FFA-IR: Towards an Explainable and Reliable Medical Report Generation Benchmark."

FFA-IR The official start-up code for paper "FFA-IR: Towards an Explainable and Reliable Medical Report Generation Benchmark." The framework is inheri

Mingjie 28 Dec 16, 2022
Pytorch based library to rank predicted bounding boxes using text/image user's prompts.

pytorch_clip_bbox: Implementation of the CLIP guided bbox ranking for Object Detection. Pytorch based library to rank predicted bounding boxes using t

Sergei Belousov 50 Nov 27, 2022
My implementation of transformers related papers for computer vision in pytorch

vision_transformers This is my personnal repo to implement new transofrmers based and other computer vision DL models I am currenlty working without a

samsja 1 Nov 10, 2021
This repo will contain code to reproduce and build upon understanding transfer learning

What is being transferred in transfer learning? This repo contains the code for the following paper: Behnam Neyshabur*, Hanie Sedghi*, Chiyuan Zhang*.

4 Jun 16, 2021
MassiveSumm: a very large-scale, very multilingual, news summarisation dataset

MassiveSumm: a very large-scale, very multilingual, news summarisation dataset This repository contains links to data and code to fetch and reproduce

Daniel Varab 19 Dec 16, 2022
Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai

Coursera-deep-learning-specialization - Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai: (i) Neural Networks an

Aman Chadha 1.7k Jan 08, 2023
[PyTorch] Official implementation of CVPR2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency". https://arxiv.org/abs/2103.05465

PointDSC repository PyTorch implementation of PointDSC for CVPR'2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency",

153 Dec 14, 2022
In this project we predict the forest cover type using the cartographic variables in the training/test datasets.

Kaggle Competition: Forest Cover Type Prediction In this project we predict the forest cover type (the predominant kind of tree cover) using the carto

Marianne Joy Leano 1 Mar 15, 2022
PEPit is a package enabling computer-assisted worst-case analyses of first-order optimization methods.

PEPit: Performance Estimation in Python This open source Python library provides a generic way to use PEP framework in Python. Performance estimation

Baptiste 53 Nov 16, 2022
Official implementation for "Symbolic Learning to Optimize: Towards Interpretability and Scalability"

Symbolic Learning to Optimize This is the official implementation for ICLR-2022 paper "Symbolic Learning to Optimize: Towards Interpretability and Sca

VITA 8 Dec 19, 2022
Pytorch implementation code for [Neural Architecture Search for Spiking Neural Networks]

Neural Architecture Search for Spiking Neural Networks Pytorch implementation code for [Neural Architecture Search for Spiking Neural Networks] (https

Intelligent Computing Lab at Yale University 28 Nov 18, 2022
Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included.

pixel_character_generator Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included. Dataset TinyHero D

Agnieszka Mikołajczyk 88 Nov 17, 2022
A scientific and useful toolbox, which contains practical and effective long-tail related tricks with extensive experimental results

Bag of tricks for long-tailed visual recognition with deep convolutional neural networks This repository is the official PyTorch implementation of AAA

Yong-Shun Zhang 181 Dec 28, 2022
Study of human inductive biases in CNNs and Transformers.

Are Convolutional Neural Networks or Transformers more like human vision? This repository contains the code and fine-tuned models of popular Convoluti

Shikhar Tuli 39 Dec 08, 2022
[CVPR'22] COAP: Learning Compositional Occupancy of People

COAP: Compositional Articulated Occupancy of People Paper | Video | Project Page This is the official implementation of the CVPR 2022 paper COAP: Lear

Marko Mihajlovic 111 Dec 11, 2022
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification (NeurIPS 2021)

Graph Posterior Network This is the official code repository to the paper Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classifica

Maximilian Stadler 30 Dec 05, 2022
Code for LIGA-Stereo Detector, ICCV'21

LIGA-Stereo Introduction This is the official implementation of the paper LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based

Xiaoyang Guo 75 Dec 09, 2022
Visualizing lattice vibration information from phonon dispersion to atoms (For GPUMD)

Phonon-Vibration-Viewer (For GPUMD) Visualizing lattice vibration information from phonon dispersion for primitive atoms. In this tutorial, we will in

Liangting 6 Dec 10, 2022
FedTorch is an open-source Python package for distributed and federated training of machine learning models using PyTorch distributed API

FedTorch is a generic repository for benchmarking different federated and distributed learning algorithms using PyTorch Distributed API.

Machine Learning and Optimization Lab @PennState 136 Dec 23, 2022