[PyTorch] Official implementation of CVPR2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency". https://arxiv.org/abs/2103.05465

Overview

PointDSC repository

PyTorch implementation of PointDSC for CVPR'2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency", by Xuyang Bai, Zixin Luo, Lei Zhou, Hongkai Chen, Lei Li, Zeyu Hu, Hongbo Fu and Chiew-Lan Tai.

This paper focus on outlier rejection for 3D point clouds registration. If you find this project useful, please cite:

@article{bai2021pointdsc,
  title={{PointDSC}: {R}obust {P}oint {C}loud {R}egistration using {D}eep {S}patial {C}onsistency},
  author={Xuyang Bai, Zixin Luo, Lei Zhou, Hongkai Chen, Lei Li, Zeyu Hu, Hongbo Fu and Chiew-Lan Tai},
  journal={CVPR},
  year={2021}
}

Introduction

Removing outlier correspondences is one of the critical steps for successful feature-based point cloud registration. Despite the increasing popularity of introducing deep learning techniques in this field, spatial consistency, which is essentially established by a Euclidean transformation between point clouds, has received almost no individual attention in existing learning frameworks. In this paper, we present PointDSC, a novel deep neural network that explicitly incorporates spatial consistency for pruning outlier correspondences. First, we propose a nonlocal feature aggregation module, weighted by both feature and spatial coherence, for feature embedding of the input correspondences. Second, we formulate a differentiable spectral matching module, supervised by pairwise spatial compatibility, to estimate the inlier confidence of each correspondence from the embedded features. With modest computation cost, our method outperforms the state-of-the-art hand-crafted and learning-based outlier rejection approaches on several real-world datasets by a significant margin. We also show its wide applicability by combining PointDSC with different 3D local descriptors.

fig0

Requirements

If you are using conda, you may configure PointDSC as:

conda env create -f environment.yml
conda activate pointdsc

If you also want to use FCGF as the 3d local descriptor, please install MinkowskiEngine v0.5.0 and download the FCGF model (pretrained on 3DMatch) from here.

Demo

We provide a small demo to extract dense FPFH descriptors for two point cloud, and register them using PointDSC. The ply files are saved in the demo_data folder, which can be replaced by your own data. Please use model pretrained on 3DMatch for indoor RGB-D scans and model pretrained on KITTI for outdoor LiDAR scans. To try the demo, please run

python demo_registration.py --chosen_snapshot [PointDSC_3DMatch_release/PointDSC_KITTI_release] --descriptor [fcgf/fpfh]

For challenging cases, we recommend to use learned feature descriptors like FCGF or D3Feat.

Dataset Preprocessing

3DMatch

The raw point clouds of 3DMatch can be downloaded from FCGF repo. The test set point clouds and the ground truth poses can be downloaded from 3DMatch Geometric Registration website. Please make sure the data folder contains the following:

.                          
├── fragments                 
│   ├── 7-scene-redkitechen/       
│   ├── sun3d-home_at-home_at_scan1_2013_jan_1/      
│   └── ...                
├── gt_result                   
│   ├── 7-scene-redkitechen-evaluation/   
│   ├── sun3d-home_at-home_at_scan1_2013_jan_1-evaluation/
│   └── ...         
├── threedmatch            
│   ├── *.npz
│   └── *.txt                            

To reduce the training time, we pre-compute the 3D local descriptors (FCGF or FPFH) so that we can directly build the input correspondence using NN search during training. Please use misc/cal_fcgf.py or misc/cal_fpfh.py to extract FCGF or FPFH descriptors. Here we provide the pre-computed descriptors for the 3DMatch test set.

KITTI

The raw point clouds can be download from KITTI Odometry website. Please follow the similar steps as 3DMatch dataset for pre-processing.

Augmented ICL-NUIM

Data can be downloaded from Redwood website. Details can be found in multiway/README.md

Pretrained Model

We provide the pre-trained model of 3DMatch in snapshot/PointDSC_3DMatch_release and KITTI in snapshot/PointDSC_KITTI_release.

Instructions to training and testing

3DMatch

The training and testing on 3DMatch dataset can be done by running

python train_3dmatch.py

python evaluation/test_3DMatch.py --chosen_snapshot [exp_id] --use_icp False

where the exp_id should be replaced by the snapshot folder name for testing (e.g. PointDSC_3DMatch_release). The testing results will be saved in logs/. The training config can be changed in config.py. We also provide the scripts to test the traditional outlier rejection baselines on 3DMatch in baseline_scripts/baseline_3DMatch.py.

KITTI

Similarly, the training and testing of KITTI data set can be done by running

python train_KITTI.py

python evaluation/test_KITTI.py --chosen_snapshot [exp_id] --use_icp False

We also provide the scripts to test the traditional outlier rejection baselines on KITTI in baseline_scripts/baseline_KITTI.py.

Augmemented ICL-NUIM

The detailed guidance of evaluating our method in multiway registration tasks can be found in multiway/README.md

3DLoMatch

We also evaluate our method on a recently proposed benchmark 3DLoMatch following OverlapPredator,

python evaluation/test_3DLoMatch.py --chosen_snapshot [exp_id] --descriptor [fcgf/predator] --num_points 5000

If you want to evaluate predator descriptor with PointDSC, you first need to follow the offical instruction of OverlapPredator to extract the features.

Contact

If you run into any problems or have questions, please create an issue or contact [email protected]

Acknowledgments

We thank the authors of

for open sourcing their methods.

Owner
PhD candidate at HKUST.
A very impractical 3D rendering engine that runs in the python terminal.

Terminal-3D-Render A very impractical 3D rendering engine that runs in the python terminal. do NOT try to run this program using the standard python I

23 Dec 31, 2022
Pytorch implementation of few-shot semantic image synthesis

Few-shot Semantic Image Synthesis Using StyleGAN Prior Our method can synthesize photorealistic images from dense or sparse semantic annotations using

40 Sep 26, 2022
People log into different sites every day to get information and browse through these sites one by one

HyperLink People log into different sites every day to get information and browse through these sites one by one. And they are exposed to advertisemen

0 Feb 17, 2022
End-to-End Dense Video Captioning with Parallel Decoding (ICCV 2021)

PDVC Official implementation for End-to-End Dense Video Captioning with Parallel Decoding (ICCV 2021) [paper] [valse论文速递(Chinese)] This repo supports:

Teng Wang 118 Dec 16, 2022
TargetAllDomainObjects - A python wrapper to run a command on against all users/computers/DCs of a Windows Domain

TargetAllDomainObjects A python wrapper to run a command on against all users/co

Podalirius 19 Dec 13, 2022
Implementation for our AAAI2021 paper (Entity Structure Within and Throughout: Modeling Mention Dependencies for Document-Level Relation Extraction).

SSAN Introduction This is the pytorch implementation of the SSAN model (see our AAAI2021 paper: Entity Structure Within and Throughout: Modeling Menti

benfeng 69 Nov 15, 2022
Pytorch modules for paralel models with same architecture. Ideal for multi agent-based systems

WideLinears Pytorch parallel Neural Networks A package of pytorch modules for fast paralellization of separate deep neural networks. Ideal for agent-b

1 Dec 17, 2021
Source code for the GPT-2 story generation models in the EMNLP 2020 paper "STORIUM: A Dataset and Evaluation Platform for Human-in-the-Loop Story Generation"

Storium GPT-2 Models This is the official repository for the GPT-2 models described in the EMNLP 2020 paper [STORIUM: A Dataset and Evaluation Platfor

Nader Akoury 27 Dec 20, 2022
A neuroanatomy-based augmented reality experience powered by computer vision. Features 3D visuals of the Atlas Brain Map slices.

Brain Augmented Reality (AR) A neuroanatomy-based augmented reality experience powered by computer vision that features 3D visuals of the Atlas Brain

Yasmeen Brain 10 Oct 06, 2022
A python library to artfully visualize Factorio Blueprints and an interactive web demo for using it.

Factorio Blueprint Visualizer I love the game Factorio and I really like the look of factories after growing for many hours or blueprints after tweaki

Piet Brömmel 124 Jan 07, 2023
VL-LTR: Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition

VL-LTR: Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition Usage First, install PyTorch 1.7.1+, torchvision 0.8.2

40 Dec 12, 2022
Official Repository for Machine Learning class - Physics Without Frontiers 2021

PWF 2021 Física Sin Fronteras es un proyecto del Centro Internacional de Física Teórica (ICTP) en Trieste Italia. El ICTP es un centro dedicado a fome

36 Aug 06, 2022
Writeups for the challenges from DownUnderCTF 2021

cloud Challenge Author Difficulty Release Round Bad Bucket Blue Alder easy round 1 Not as Bad Bucket Blue Alder easy round 1 Lost n Found Blue Alder m

DownUnderCTF 161 Dec 31, 2022
Code for the paper "Graph Attention Tracking". (CVPR2021)

SiamGAT 1. Environment setup This code has been tested on Ubuntu 16.04, Python 3.5, Pytorch 1.2.0, CUDA 9.0. Please install related libraries before r

122 Dec 24, 2022
PyTorch CZSL framework containing GQA, the open-world setting, and the CGE and CompCos methods.

Compositional Zero-Shot Learning This is the official PyTorch code of the CVPR 2021 works Learning Graph Embeddings for Compositional Zero-shot Learni

EML Tübingen 70 Dec 27, 2022
Pytorch codes for Feature Transfer Learning for Face Recognition with Under-Represented Data

FTLNet_Pytorch Pytorch codes for Feature Transfer Learning for Face Recognition with Under-Represented Data 1. Introduction This repo is an unofficial

1 Nov 04, 2020
Course on computational design, non-linear optimization, and dynamics of soft systems at UIUC.

Computational Design and Dynamics of Soft Systems · This is a repository that contains the source code for generating the lecture notes, handouts, exe

Tejaswin Parthasarathy 4 Jul 21, 2022
Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder

RAVE: Realtime Audio Variational autoEncoder Official implementation of RAVE: A variational autoencoder for fast and high-quality neural audio synthes

ACIDS 587 Jan 01, 2023
We utilize deep reinforcement learning to obtain favorable trajectories for visual-inertial system calibration.

Unified Data Collection for Visual-Inertial Calibration via Deep Reinforcement Learning Update: The lastest code will be updated in this branch. Pleas

ETHZ ASL 27 Dec 29, 2022
Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding

🍐 quince Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding 🍐 Installation $ git clone

Andrew Jesson 19 Jun 23, 2022