Fight Recognition from Still Images in the Wild @ WACVW2022, Real-world Surveillance Workshop

Related tags

Deep LearningSMFI
Overview

Fight Detection from Still Images in the Wild

Detecting fights from still images is an important task required to limit the distribution of social media images with fight content, in order to prevent the negative effects of such violent media items. For this reason, in this study we addressed the problem of fight detection from still images collected from web and social media. We explored how well one can detect fights from just a single still image.

In this context, a new image dataset on the fight recognition from still images task is collected named Social Media Fight Images (SMFI) dataset. The dataset samples gathered from social media (Twitter and Google) and NTU-CCTV Fights 1 dataset. Since the main concern is recognizing fight actions in the wild, real-world scenarios are included in the dataset where a mass amount of them are spontaneous recordings of fight actions. Using different keywords while crawling the data, the regional diversity is also maintained since the social media uploadings are mostly regional where users share the content in their own language. Some example images from the dataset are given below:

samples

Both fight and non-fight samples are collected from the same domain where the non-fight samples are also content likely to be shared on social media. Hard non-fight samples are also included in the dataset which displays the actions that might be misinterpreted as fight such as hugging, throwing ball, dancing and more. This prevents the dataset bias, so that the trained models focuses on the actions and the performers on the scene instead of benefiting other characteristics such as motion blur. The distribution of the dataset samples among each class and source is given below:

Twitter Google NTU CCTV-Fights Total
Fight 2247 162 330 2739
Non-fight 2642 146 164 2952
Total 4889 308 494 5691

Due to the copyright issues the dataset images are not shared directly and the links to the images / videos are shared. As the dataset samples might be deleted in time by the users or the authorities, the size of the dataset is subject to change.

Dataset Format

The dataset samples are shared through a CSV file where the columns are as follows:

  • Image ID: Unique ID assigned to each image.
  • Class: class of the image as fight / nofight
  • Source: The source of the images or videos as twitter_img / twitter_video / google / ntu-cctv
  • URL: The link for the images / videos.
    • For Twitter and Google data, image and video URLs are shared.
    • For the NTU CCTV-Fights data, the path to the original video is shared.
  • Frame number: If the image is extracted from a video, this column indicates the number of frame within the video.
    • For Twitter videos, the frame number is the number of frame (0-9) out of 10 uniformly sampled frames from each video.
    • For NTU CCTV-Fight videos, the frame number is the number of frame (0-N) out of all frames (N) extracted from each video.

In order to retrieve the dataset, you should first download the NTU CCTV-Fights here.

Citation

TBA

References

1 Mauricio Perez, Alex C. Kot, Anderson Rocha, “Detection of Real-world Fights in Surveillance Videos”, in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2019

Owner
Şeymanur Aktı
Şeymanur Aktı
Compact Bidirectional Transformer for Image Captioning

Compact Bidirectional Transformer for Image Captioning Requirements Python 3.8 Pytorch 1.6 lmdb h5py tensorboardX Prepare Data Please use git clone --

YE Zhou 19 Dec 12, 2022
SMIS - Semantically Multi-modal Image Synthesis(CVPR 2020)

Semantically Multi-modal Image Synthesis Project page / Paper / Demo Semantically Multi-modal Image Synthesis(CVPR2020). Zhen Zhu, Zhiliang Xu, Anshen

316 Dec 01, 2022
Dungeons and Dragons randomized content generator

Component based Dungeons and Dragons generator Supports Entity/Monster Generation NPC Generation Weapon Generation Encounter Generation Environment Ge

Zac 3 Dec 04, 2021
Several simple examples for popular neural network toolkits calling custom CUDA operators.

Neural Network CUDA Example Several simple examples for neural network toolkits (PyTorch, TensorFlow, etc.) calling custom CUDA operators. We provide

WeiYang 798 Jan 01, 2023
Fast, differentiable sorting and ranking in PyTorch

Torchsort Fast, differentiable sorting and ranking in PyTorch. Pure PyTorch implementation of Fast Differentiable Sorting and Ranking (Blondel et al.)

Teddy Koker 655 Jan 04, 2023
Mask-invariant Face Recognition through Template-level Knowledge Distillation

Mask-invariant Face Recognition through Template-level Knowledge Distillation This is the official repository of "Mask-invariant Face Recognition thro

Fadi Boutros 35 Dec 06, 2022
PartImageNet is a large, high-quality dataset with part segmentation annotations

PartImageNet: A Large, High-Quality Dataset of Parts We will release our dataset and scripts soon after cleaning and approval. Introduction PartImageN

Ju He 77 Nov 30, 2022
The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization

PRIMER The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization. PRIMER is a pre-trained model for mu

AI2 114 Jan 06, 2023
Build an Amazon SageMaker Pipeline to Transform Raw Texts to A Knowledge Graph

Build an Amazon SageMaker Pipeline to Transform Raw Texts to A Knowledge Graph This repository provides a pipeline to create a knowledge graph from ra

AWS Samples 3 Jan 01, 2022
Weighing Counts: Sequential Crowd Counting by Reinforcement Learning

LibraNet This repository includes the official implementation of LibraNet for crowd counting, presented in our paper: Weighing Counts: Sequential Crow

Hao Lu 18 Nov 05, 2022
Code for Robust Contrastive Learning against Noisy Views

Robust Contrastive Learning against Noisy Views This repository provides a PyTorch implementation of the Robust InfoNCE loss proposed in paper Robust

Ching-Yao Chuang 53 Jan 08, 2023
CRNN With PyTorch

CRNN-PyTorch Implementation of https://arxiv.org/abs/1507.05717

Vadim 4 Sep 01, 2022
This project uses reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can learn to read tape. The project is dedicated to hero in life great Jesse Livermore.

Reinforcement-trading This project uses Reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can

Deepender Singla 1.4k Dec 22, 2022
ChainerRL is a deep reinforcement learning library built on top of Chainer.

ChainerRL and PFRL ChainerRL (this repository) is a deep reinforcement learning library that implements various state-of-the-art deep reinforcement al

Chainer 1.1k Jan 01, 2023
TF Image Segmentation: Image Segmentation framework

TF Image Segmentation: Image Segmentation framework The aim of the TF Image Segmentation framework is to provide/provide a simplified way for: Convert

Daniil Pakhomov 546 Dec 17, 2022
Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions

Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions Accepted by AAAI 2022 [arxiv] Wenyu Liu, Gaofeng Ren, Runsheng Yu, Shi Guo, Jia

liuwenyu 245 Dec 16, 2022
PyTorch implementation of "Transparency by Design: Closing the Gap Between Performance and Interpretability in Visual Reasoning"

Transparency-by-Design networks (TbD-nets) This repository contains code for replicating the experiments and visualizations from the paper Transparenc

David Mascharka 351 Nov 18, 2022
Keras + Hyperopt: A very simple wrapper for convenient hyperparameter optimization

This project is now archived. It's been fun working on it, but it's time for me to move on. Thank you for all the support and feedback over the last c

Max Pumperla 2.1k Jan 03, 2023
Shared Attention for Multi-label Zero-shot Learning

Shared Attention for Multi-label Zero-shot Learning Overview This repository contains the implementation of Shared Attention for Multi-label Zero-shot

dathuynh 26 Dec 14, 2022
Regression Metrics Calculation Made easy for tensorflow2 and scikit-learn

Regression Metrics Installation To install the package from the PyPi repository you can execute the following command: pip install regressionmetrics I

Ashish Patel 11 Dec 16, 2022