Regression Metrics Calculation Made easy for tensorflow2 and scikit-learn

Overview

Regression Metrics

Installation

To install the package from the PyPi repository you can execute the following command:

pip install regressionmetrics

If you prefer, you can clone it and run the setup.py file. Use the following commands to get a copy from GitHub and install all dependencies:

git clone https://github.com/ashishpatel26/regressionmetrics.git
cd regressionmetrics
pip install .
  • Mean Absolute Error - sklearn, keras
  • Mean Square Error - sklearn, keras
  • Root Mean Square Error - sklearn, keras
  • Root Mean Square Logarithmic Error - sklearn, keras
  • Root Mean Square Logarithmic Error with negative value handle - sklearn
  • R2 Score - sklearn, keras
  • Adjusted R2 Score - sklearn, keras
  • Mean Absolute Percentage Error - sklearn, keras
  • Mean squared logarithmic Error - sklearn, keras
  • Symmetric mean absolute percentage error - sklearn, keras
  • Normalized Root Mean Squared Error - sklearn, keras

Usage

Usage with scikit learn :

from regressionmetrics.metrics import *

y_true = [3, 0.5, 2, 7]
y_pred = [2.5, 0.0, 2, -8]


print("R2Score: ",r2(y_true, y_pred))
print("Adjusted_R2_Score:",adj_r2(y_true, y_pred))
print("RMSE:", rmse(y_true, y_pred))
print("MAE:",mae(y_true, y_pred))
print("RMSLE with Neg Value:", rmsle_with_negval(y_true, y_pred))
print("MSE:", mse(y_true, y_pred))
print("MAPE: ", mape(y_true, y_pred))

Usage with Tensorflow keras:

from regressionmetrics.keras import *
import pandas as pd
import numpy as np

import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers

(x_train, y_train), (x_test, y_test) = tf.keras.datasets.boston_housing.load_data(path="boston_housing.npz", test_split=0.2, seed=113)

model = keras.Sequential([
    layers.Dense(64, activation='relu', input_shape=(x_train.shape[1],)),
    layers.Dense(64, activation='relu'),
    layers.Dense(1)
])
model.compile(optimizer='rmsprop', loss='mse', metrics=[r2, mae, mse, rmse, mape, rmsle, nrmse])
model.fit(x_train, y_train, epochs=10, batch_size=32, validation_data=(x_test, y_test))
Epoch 1/10
 1/13 [=>............................] - ETA: 7s - loss: 1574.7567 - r2: 0.6597 - mae: 37.1803 - mse: 1574.7567 - rmse: 37.1802 - mape: 159.261313/13 [==============================] - 1s 15ms/step - loss: 270.0653 - r2: 0.9472 - mae: 11.5427 - mse: 270.0653 - rmse: 11.5427 - mape: 57.3519 - rmsle: 0.6445 - nrmse: 0.5735 - val_loss: 88.6351 - val_r2: 0.9727 - val_mae: 6.6028 - val_mse: 88.6351 - val_rmse: 6.6028 - val_mape: 29.6502 - val_rmsle: 0.3161 - val_nrmse: 0.2965
Epoch 2/10
 1/13 [=>............................] - ETA: 0s - loss: 74.6623 - r2: 0.9913 - mae: 5.5958 - mse: 74.6623 - rmse: 5.5958 - mape: 25.3655 - rmsl13/13 [==============================] - 0s 3ms/step - loss: 87.1876 - r2: 0.9856 - mae: 6.9466 - mse: 87.1876 - rmse: 6.9466 - mape: 33.4256 - rmsle: 0.3057 - nrmse: 0.3343 - val_loss: 81.7884 - val_r2: 0.9712 - val_mae: 6.6424 - val_mse: 81.7884 - val_rmse: 6.6424 - val_mape: 28.8687 - val_rmsle: 0.3334 - val_nrmse: 0.2887
Epoch 3/10
 1/13 [=>............................] - ETA: 0s - loss: 41.2790 - r2: 0.9722 - mae: 5.3798 - mse: 41.2790 - rmse: 5.3798 - mape: 28.7497 - rmsl13/13 [==============================] - 0s 3ms/step - loss: 103.6462 - r2: 0.9825 - mae: 7.1041 - mse: 103.6462 - rmse: 7.1041 - mape: 34.6278 - rmsle: 0.3231 - nrmse: 0.3463 - val_loss: 71.7539 - val_r2: 0.9769 - val_mae: 6.1455 - val_mse: 71.7539 - val_rmse: 6.1455 - val_mape: 27.5078 - val_rmsle: 0.2893 - val_nrmse: 0.2751
Epoch 4/10
 1/13 [=>............................] - ETA: 0s - loss: 113.6758 - r2: 0.9917 - mae: 6.6575 - mse: 113.6758 - rmse: 6.6575 - mape: 20.8683 - rm13/13 [==============================] - 0s 3ms/step - loss: 88.1601 - r2: 0.9823 - mae: 6.8479 - mse: 88.1601 - rmse: 6.8479 - mape: 32.5867 - rmsle: 0.3080 - nrmse: 0.3259 - val_loss: 63.3707 - val_r2: 0.9829 - val_mae: 6.0845 - val_mse: 63.3707 - val_rmse: 6.0845 - val_mape: 33.1628 - val_rmsle: 0.2747 - val_nrmse: 0.3316
Epoch 5/10
 1/13 [=>............................] - ETA: 0s - loss: 85.8188 - r2: 0.9893 - mae: 7.0097 - mse: 85.8188 - rmse: 7.0097 - mape: 34.8362 - rmsl13/13 [==============================] - 0s 3ms/step - loss: 82.3233 - r2: 0.9860 - mae: 6.5795 - mse: 82.3233 - rmse: 6.5795 - mape: 32.5198 - rmsle: 0.3105 - nrmse: 0.3252 - val_loss: 74.4783 - val_r2: 0.9813 - val_mae: 6.8936 - val_mse: 74.4783 - val_rmse: 6.8936 - val_mape: 41.9492 - val_rmsle: 0.3067 - val_nrmse: 0.4195
Epoch 7/10
 1/13 [=>............................] - ETA: 0s - loss: 105.6430 - r2: 0.9658 - mae: 9.4737 - mse: 105.6430 - rmse: 9.4737 - mape: 53.0854 - rm13/13 [==============================] - 0s 3ms/step - loss: 76.0740 - r2: 0.9856 - mae: 6.4234 - mse: 76.0740 - rmse: 6.4234 - mape: 31.8728 - rmsle: 0.2828 - nrmse: 0.3187 - val_loss: 104.1779 - val_r2: 0.9679 - val_mae: 7.5539 - val_mse: 104.1779 - val_rmse: 7.5539 - val_mape: 30.9401 - val_rmsle: 0.3692 - val_nrmse: 0.3094
Epoch 8/10
 1/13 [=>............................] - ETA: 0s - loss: 100.0114 - r2: 0.9833 - mae: 6.8492 - mse: 100.0114 - rmse: 6.8492 - mape: 27.9621 - rm13/13 [==============================] - 0s 4ms/step - loss: 68.4268 - r2: 0.9892 - mae: 5.9540 - mse: 68.4268 - rmse: 5.9540 - mape: 29.7586 - rmsle: 0.2623 - nrmse: 0.2976 - val_loss: 171.7968 - val_r2: 0.9412 - val_mae: 10.5855 - val_mse: 171.7968 - val_rmse: 10.5855 - val_mape: 47.9010 - val_rmsle: 0.7561 - val_nrmse: 0.4790
Epoch 9/10
 1/13 [=>............................] - ETA: 0s - loss: 291.8670 - r2: 0.9725 - mae: 13.9899 - mse: 291.8670 - rmse: 13.9899 - mape: 61.3658 - 13/13 [==============================] - 0s 3ms/step - loss: 92.3889 - r2: 0.9796 - mae: 6.8932 - mse: 92.3889 - rmse: 6.8932 - mape: 33.2856 - rmsle: 0.3333 - nrmse: 0.3329 - val_loss: 67.2208 - val_r2: 0.9808 - val_mae: 5.8498 - val_mse: 67.2208 - val_rmse: 5.8498 - val_mape: 26.4504 - val_rmsle: 0.2680 - val_nrmse: 0.2645
Epoch 10/10
 1/13 [=>............................] - ETA: 0s - loss: 97.0853 - r2: 0.9923 - mae: 5.9866 - mse: 97.0853 - rmse: 5.9866 - mape: 24.9878 - rmsl13/13 [==============================] - 0s 3ms/step - loss: 78.3823 - r2: 0.9856 - mae: 6.5958 - mse: 78.3823 - rmse: 6.5958 - mape: 32.8136 - rmsle: 0.3025 - nrmse: 0.3281 - val_loss: 69.5314 - val_r2: 0.9787 - val_mae: 6.8302 - val_mse: 69.5314 - val_rmse: 6.8302 - val_mape: 37.3933 - val_rmsle: 0.2974 - val_nrmse: 0.3739

😃 Thanks for reading and forking.

You might also like...
Hitters Linear Regression - Hitters Linear Regression With Python
Hitters Linear Regression - Hitters Linear Regression With Python

Hitters_Linear_Regression Kullanacağımız veri seti Carnegie Mellon Üniversitesi'

A set of tools for creating and testing machine learning features, with a scikit-learn compatible API

Feature Forge This library provides a set of tools that can be useful in many machine learning applications (classification, clustering, regression, e

Using python and scikit-learn to make stock predictions

MachineLearningStocks in python: a starter project and guide EDIT as of Feb 2021: MachineLearningStocks is no longer actively maintained MachineLearni

A real-time speech emotion recognition application using Scikit-learn and gradio
A real-time speech emotion recognition application using Scikit-learn and gradio

Speech-Emotion-Recognition-App A real-time speech emotion recognition application using Scikit-learn and gradio. Requirements librosa==0.6.3 numpy sou

Python package for Bayesian Machine Learning with scikit-learn API
Python package for Bayesian Machine Learning with scikit-learn API

Python package for Bayesian Machine Learning with scikit-learn API Installing & Upgrading package pip install https://github.com/AmazaspShumik/sklearn

A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

scikit-learn: machine learning in Python
scikit-learn: machine learning in Python

scikit-learn is a Python module for machine learning built on top of SciPy and is distributed under the 3-Clause BSD license. The project was started

A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

Comments
  • Very nice toolkit

    Very nice toolkit

    This isn't really an issue. I wanted to thank you for sharing such a nice toolkit for regression tasks with tensorflow

    Do you have a similar toolkit for classification?

    opened by happypanda5 0
Releases(v1.4.0)
  • v1.4.0(Oct 30, 2021)

    • Changelog for v1.4.0 (2022-01-13)

    • Name clashes resolved with keras names
    • Changelog for v1.3.0 (2021-11-18)

    • new regresson metrics are added with details explaination
    • Changelog for v1.2.0 (2021-10-31)

    • Adjusted r2 score error solved
    • Changelog for v1.1.0 (2021-10-31)

    • SomeError solved
    • Changelog for v1.0.0 (2021-10-31)

    • regressionmetrics package first release 1.0.0.
    Source code(tar.gz)
    Source code(zip)
Owner
Ashish Patel
AI Researcher & Senior Data Scientist at Softweb Solutions Avnet Solutions(Fortune 500) | Rank 3 Kaggle Kernel Master
Ashish Patel
Learned model to estimate number of distinct values (NDV) of a population using a small sample.

Learned NDV estimator Learned model to estimate number of distinct values (NDV) of a population using a small sample. The model approximates the maxim

2 Nov 21, 2022
Kaggle Feedback Prize - Evaluating Student Writing 15th solution

Kaggle Feedback Prize - Evaluating Student Writing 15th solution First of all, I would like to thank the excellent notebooks and discussions from http

Lingyuan Zhang 6 Mar 24, 2022
The full training script for Enformer (Tensorflow Sonnet) on TPU clusters

Enformer TPU training script (wip) The full training script for Enformer (Tensorflow Sonnet) on TPU clusters, in an effort to migrate the model to pyt

Phil Wang 10 Oct 19, 2022
Inkscape extensions for figure resizing and editing

Academic-Inkscape: Extensions for figure resizing and editing This repository contains several Inkscape extensions designed for editing plots. Scale P

192 Dec 26, 2022
Complete the code of prefix-tuning in low data setting

Prefix Tuning Note: 作者在论文中提到使用真实的word去初始化prefix的操作(Initializing the prefix with activations of real words,significantly improves generation)。我在使用作者提供的

Andrew Zeng 4 Jul 11, 2022
PyTorch implementation of ENet

PyTorch-ENet PyTorch (v1.1.0) implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation, ported from the lua-torc

David Silva 333 Dec 29, 2022
An implementation of the paper "A Neural Algorithm of Artistic Style"

A Neural Algorithm of Artistic Style implementation - Neural Style Transfer This is an implementation of the research paper "A Neural Algorithm of Art

Srijarko Roy 27 Sep 20, 2022
Make your own game in a font!

Project structure. Included is a suite of tools to create font games. Tutorial: For a quick tutorial about how to make your own game go here For devel

Michael Mulet 125 Dec 04, 2022
🤗 Push your spaCy pipelines to the Hugging Face Hub

spacy-huggingface-hub: Push your spaCy pipelines to the Hugging Face Hub This package provides a CLI command for uploading any trained spaCy pipeline

Explosion 30 Oct 09, 2022
Segmentation models with pretrained backbones. PyTorch.

Python library with Neural Networks for Image Segmentation based on PyTorch. The main features of this library are: High level API (just two lines to

Pavel Yakubovskiy 6.6k Jan 06, 2023
DeOldify - A Deep Learning based project for colorizing and restoring old images (and video!)

DeOldify - A Deep Learning based project for colorizing and restoring old images (and video!)

Jason Antic 15.8k Jan 04, 2023
Article Reranking by Memory-enhanced Key Sentence Matching for Detecting Previously Fact-checked Claims.

MTM This is the official repository of the paper: Article Reranking by Memory-enhanced Key Sentence Matching for Detecting Previously Fact-checked Cla

ICTMCG 13 Sep 17, 2022
Tree-based Search Graph for Approximate Nearest Neighbor Search

TBSG: Tree-based Search Graph for Approximate Nearest Neighbor Search. TBSG is a graph-based algorithm for ANNS based on Cover Tree, which is also an

Fanxbin 2 Dec 27, 2022
Train a deep learning net with OpenStreetMap features and satellite imagery.

DeepOSM Classify roads and features in satellite imagery, by training neural networks with OpenStreetMap (OSM) data. DeepOSM can: Download a chunk of

TrailBehind, Inc. 1.3k Nov 24, 2022
The authors' implementation of Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations

Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations This is the authors' implementation of Unsupervised Adversarial Learning of

Dwango Media Village 140 Dec 07, 2022
This is the first released system towards complex meters` detection and recognition, which is implemented by computer vision techniques.

A three-stage detection and recognition pipeline of complex meters in wild This is the first released system towards detection and recognition of comp

Yan Shu 19 Nov 28, 2022
SMPL-X: A new joint 3D model of the human body, face and hands together

SMPL-X: A new joint 3D model of the human body, face and hands together [Paper Page] [Paper] [Supp. Mat.] Table of Contents License Description News I

Vassilis Choutas 1k Jan 09, 2023
Data for "Driving the Herd: Search Engines as Content Influencers" paper

herding_data Data for "Driving the Herd: Search Engines as Content Influencers" paper Dataset description The collection contains 2250 documents, 30 i

0 Aug 17, 2021
Biomarker identification for COVID-19 Severity in BALF cells Single-cell RNA-seq data

scBALF Covid-19 dataset Analysis Here is the Github page that has the codes for the bioinformatics pipeline described in the paper COVID-Datathon: Bio

Nami Niyakan 2 May 21, 2022
On Evaluation Metrics for Graph Generative Models

On Evaluation Metrics for Graph Generative Models Authors: Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, Graham Taylor This is the offic

13 Jan 07, 2023