Multi-Scale Progressive Fusion Network for Single Image Deraining

Related tags

Deep LearningMSPFN
Overview

Multi-Scale Progressive Fusion Network for Single Image Deraining (MSPFN)

This is an implementation of the MSPFN model proposed in the paper (Multi-Scale Progressive Fusion Network for Single Image Deraining) with TensorFlow.

Requirements

  • Python 3
  • TensorFlow 1.12.0
  • OpenCV
  • tqdm
  • glob
  • sys

Motivation

The repetitive samples of rain streaks in a rain image as well as its multi-scale versions (multi-scale pyramid images) may carry complementary information (e.g., similar appearance) to characterize target rain streaks. We explore the multi-scale representation from input image scales and deep neural network representations in a unified framework, and propose a multi-scale progressive fusion network (MSPFN) to exploit the correlated information of rain streaks across scales for single image deraining.

Usage

I. Train the MSPFN model

Dataset Organization Form

If you prepare your own dataset, please follow the following form: |--train_data

|--rainysamples  
    |--file1
            :  
    |--file2
        :
    |--filen
    
|--clean samples
    |--file1
            :  
    |--file2
        :
    |--filen

Then you can produce the corresponding '.npy' in the '/train_data/npy' file.

$ python preprocessing.py

Training

Download training dataset ((raw images)Baidu Cloud, (Password:4qnh) (.npy)Baidu Cloud, (Password:gd2s)), or prepare your own dataset like above form.

Run the following commands:

cd ./model
python train_MSPFN.py 

II. Test the MSPFN model

Quick Test With the Raw Model (TEST_MSPFN_M17N1.PY)

Download the pretrained models (Baidu Cloud, (Password:u5v6)) (Google Drive).

Download the commonly used testing rain dataset (R100H, R100L, TEST100, TEST1200, TEST2800) (Google Drive), and the test samples and the labels of joint tasks form (BDD350, COCO350, BDD150) (Baidu Cloud, (Password:0e7o)). In addition, the test results of other competing models can be downloaded from here (TEST1200, TEST100, R100H, R100L).

Run the following commands:

cd ./model/test
python test_MSPFN.py

The deraining results will be in './test/test_data/MSPFN'. We only provide the baseline for comparison. There exists the gap (0.1-0.2db) between the provided model and the reported values in the paper, which originates in the subsequent fine-tuning of hyperparameters, training processes and constraints.

Test the Retraining Model With Your Own Dataset (TEST_MSPFN.PY)

Download the pre-trained models.

Put your dataset in './test/test_data/'.

Run the following commands:

cd ./model/test
python test_MSPFN.py

The deraining results will be in './test/test_data/MSPFN'.

Citation

@InProceedings{Kui_2020_CVPR,
	author = {Jiang, Kui and Wang, Zhongyuan and Yi, Peng and Chen, Chen and Huang, Baojin and Luo, Yimin and Ma, Jiayi and Jiang, Junjun},
	title = {Multi-Scale Progressive Fusion Network for Single Image Deraining},
	booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
	month = {June},
	year = {2020}
}
@ARTICLE{9294056,
  author={K. {Jiang} and Z. {Wang} and P. {Yi} and C. {Chen} and Z. {Han} and T. {Lu} and B. {Huang} and J. {Jiang}},
  journal={IEEE Transactions on Circuits and Systems for Video Technology}, 
  title={Decomposition Makes Better Rain Removal: An Improved Attention-guided Deraining Network}, 
  year={2020},
  volume={},
  number={},
  pages={1-1},
  doi={10.1109/TCSVT.2020.3044887}}
Owner
Kuijiang
I am a PhD, and currently work at the National Engineering Research Center for Multimedia Software, School of Computer Science, Wuhan University.
Kuijiang
Building blocks for uncertainty-aware cycle consistency presented at NeurIPS'21.

UncertaintyAwareCycleConsistency This repository provides the building blocks and the API for the work presented in the NeurIPS'21 paper Robustness vi

EML Tübingen 19 Dec 12, 2022
An end-to-end regression problem of predicting the price of properties in Bangalore.

Bangalore-House-Price-Prediction An end-to-end regression problem of predicting the price of properties in Bangalore. Deployed in Heroku using Flask.

Shruti Balan 1 Nov 25, 2022
Materials for upcoming beginner-friendly PyTorch course (work in progress).

Learn PyTorch for Deep Learning (work in progress) I'd like to learn PyTorch. So I'm going to use this repo to: Add what I've learned. Teach others in

Daniel Bourke 2.3k Dec 29, 2022
OverFeat is a Convolutional Network-based image classifier and feature extractor.

OverFeat OverFeat is a Convolutional Network-based image classifier and feature extractor. OverFeat was trained on the ImageNet dataset and participat

593 Dec 08, 2022
Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

Kai Zhang 1.2k Dec 29, 2022
Pytorch GUI(demo) for iVOS(interactive VOS) and GIS (Guided iVOS)

GUI for iVOS(interactive VOS) and GIS (Guided iVOS) GUI Implementation of CVPR2021 paper "Guided Interactive Video Object Segmentation Using Reliabili

Yuk Heo 13 Dec 09, 2022
Kaggle | 9th place (part of) solution for the Bristol-Myers Squibb – Molecular Translation challenge

Part of the 9th place solution for the Bristol-Myers Squibb – Molecular Translation challenge translating images containing chemical structures into I

Erdene-Ochir Tuguldur 22 Nov 30, 2022
A higher performance pytorch implementation of DeepLab V3 Plus(DeepLab v3+)

A Higher Performance Pytorch Implementation of DeepLab V3 Plus Introduction This repo is an (re-)implementation of Encoder-Decoder with Atrous Separab

linhua 326 Nov 22, 2022
PyTorch implementation of EigenGAN

PyTorch Implementation of EigenGAN Train python train.py [image_folder_path] --name [experiment name] Test python test.py [ckpt path] --traverse FFH

62 Nov 12, 2022
Official PyTorch implementation of "Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble" (NeurIPS'21)

Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble This is the code for reproducing the results of the paper Uncertainty-Bas

43 Nov 23, 2022
Gapmm2: gapped alignment using minimap2 (align transcripts to genome)

gapmm2: gapped alignment using minimap2 This tool is a wrapper for minimap2 to r

Jon Palmer 2 Jan 27, 2022
CTF challenges from redpwnCTF 2021

redpwnCTF 2021 Challenges This repository contains challenges from redpwnCTF 2021 in the rCDS format; challenge information is in the challenge.yaml f

redpwn 27 Dec 07, 2022
Text and code for the forthcoming second edition of Think Bayes, by Allen Downey.

Think Bayes 2 by Allen B. Downey The HTML version of this book is here. Think Bayes is an introduction to Bayesian statistics using computational meth

Allen Downey 1.5k Jan 08, 2023
Trajectory Extraction of road users via Traffic Camera

Traffic Monitoring Citation The associated paper for this project will be published here as soon as possible. When using this software, please cite th

Julian Strosahl 14 Dec 17, 2022
Exploring Simple Siamese Representation Learning

G-SimSiam A PyTorch implementation which refers to repo for the paper Exploring Simple Siamese Representation Learning by Xinlei Chen & Kaiming He Add

zhuyun 1 Dec 19, 2021
Pytorch Lightning code guideline for conferences

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Pytorch Lightning 1k Jan 02, 2023
NeuroGen: activation optimized image synthesis for discovery neuroscience

NeuroGen: activation optimized image synthesis for discovery neuroscience NeuroGen is a framework for synthesizing images that control brain activatio

3 Aug 17, 2022
Cross View SLAM

Cross View SLAM This is the associated code and dataset repository for our paper I. D. Miller et al., "Any Way You Look at It: Semantic Crossview Loca

Ian D. Miller 99 Dec 09, 2022
Aerial Imagery dataset for fire detection: classification and segmentation (Unmanned Aerial Vehicle (UAV))

Aerial Imagery dataset for fire detection: classification and segmentation using Unmanned Aerial Vehicle (UAV) Title FLAME (Fire Luminosity Airborne-b

79 Jan 06, 2023
NaijaSenti is an open-source sentiment and emotion corpora for four major Nigerian languages

NaijaSenti is an open-source sentiment and emotion corpora for four major Nigerian languages. This project was supported by lacuna-fund initiatives. Jump straight to one of the sections below, or jus

Hausa Natural Language Processing 14 Dec 20, 2022