Multi-Scale Progressive Fusion Network for Single Image Deraining

Related tags

Deep LearningMSPFN
Overview

Multi-Scale Progressive Fusion Network for Single Image Deraining (MSPFN)

This is an implementation of the MSPFN model proposed in the paper (Multi-Scale Progressive Fusion Network for Single Image Deraining) with TensorFlow.

Requirements

  • Python 3
  • TensorFlow 1.12.0
  • OpenCV
  • tqdm
  • glob
  • sys

Motivation

The repetitive samples of rain streaks in a rain image as well as its multi-scale versions (multi-scale pyramid images) may carry complementary information (e.g., similar appearance) to characterize target rain streaks. We explore the multi-scale representation from input image scales and deep neural network representations in a unified framework, and propose a multi-scale progressive fusion network (MSPFN) to exploit the correlated information of rain streaks across scales for single image deraining.

Usage

I. Train the MSPFN model

Dataset Organization Form

If you prepare your own dataset, please follow the following form: |--train_data

|--rainysamples  
    |--file1
            :  
    |--file2
        :
    |--filen
    
|--clean samples
    |--file1
            :  
    |--file2
        :
    |--filen

Then you can produce the corresponding '.npy' in the '/train_data/npy' file.

$ python preprocessing.py

Training

Download training dataset ((raw images)Baidu Cloud, (Password:4qnh) (.npy)Baidu Cloud, (Password:gd2s)), or prepare your own dataset like above form.

Run the following commands:

cd ./model
python train_MSPFN.py 

II. Test the MSPFN model

Quick Test With the Raw Model (TEST_MSPFN_M17N1.PY)

Download the pretrained models (Baidu Cloud, (Password:u5v6)) (Google Drive).

Download the commonly used testing rain dataset (R100H, R100L, TEST100, TEST1200, TEST2800) (Google Drive), and the test samples and the labels of joint tasks form (BDD350, COCO350, BDD150) (Baidu Cloud, (Password:0e7o)). In addition, the test results of other competing models can be downloaded from here (TEST1200, TEST100, R100H, R100L).

Run the following commands:

cd ./model/test
python test_MSPFN.py

The deraining results will be in './test/test_data/MSPFN'. We only provide the baseline for comparison. There exists the gap (0.1-0.2db) between the provided model and the reported values in the paper, which originates in the subsequent fine-tuning of hyperparameters, training processes and constraints.

Test the Retraining Model With Your Own Dataset (TEST_MSPFN.PY)

Download the pre-trained models.

Put your dataset in './test/test_data/'.

Run the following commands:

cd ./model/test
python test_MSPFN.py

The deraining results will be in './test/test_data/MSPFN'.

Citation

@InProceedings{Kui_2020_CVPR,
	author = {Jiang, Kui and Wang, Zhongyuan and Yi, Peng and Chen, Chen and Huang, Baojin and Luo, Yimin and Ma, Jiayi and Jiang, Junjun},
	title = {Multi-Scale Progressive Fusion Network for Single Image Deraining},
	booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
	month = {June},
	year = {2020}
}
@ARTICLE{9294056,
  author={K. {Jiang} and Z. {Wang} and P. {Yi} and C. {Chen} and Z. {Han} and T. {Lu} and B. {Huang} and J. {Jiang}},
  journal={IEEE Transactions on Circuits and Systems for Video Technology}, 
  title={Decomposition Makes Better Rain Removal: An Improved Attention-guided Deraining Network}, 
  year={2020},
  volume={},
  number={},
  pages={1-1},
  doi={10.1109/TCSVT.2020.3044887}}
Owner
Kuijiang
I am a PhD, and currently work at the National Engineering Research Center for Multimedia Software, School of Computer Science, Wuhan University.
Kuijiang
Codes of the paper Deformable Butterfly: A Highly Structured and Sparse Linear Transform.

Deformable Butterfly: A Highly Structured and Sparse Linear Transform DeBut Advantages DeBut generalizes the square power of two butterfly factor matr

Rui LIN 8 Jun 10, 2022
WaveFake: A Data Set to Facilitate Audio DeepFake Detection

WaveFake: A Data Set to Facilitate Audio DeepFake Detection This is the code repository for our NeurIPS 2021 (Track on Datasets and Benchmarks) paper

Chair for Sys­tems Se­cu­ri­ty 27 Dec 22, 2022
tsflex - feature-extraction benchmarking

tsflex - feature-extraction benchmarking This repository withholds the benchmark results and visualization code of the tsflex paper and toolkit. Flow

PreDiCT.IDLab 5 Mar 25, 2022
Convert Mission Planner (ArduCopter) Waypoint Missions to Litchi CSV Format to execute on DJI Drones

Mission Planner to Litchi Convert Mission Planner (ArduCopter) Waypoint Surveys to Litchi CSV Format to execute on DJI Drones Litchi doesn't support S

Yaros 24 Dec 09, 2022
Face Mask Detection System built with OpenCV, TensorFlow using Computer Vision concepts

Face mask detection Face Mask Detection System built with OpenCV, TensorFlow using Computer Vision concepts in order to detect face masks in static im

Vaibhav Shukla 1 Oct 27, 2021
Unofficial PyTorch implementation of Neural Additive Models (NAM) by Agarwal, et al.

nam-pytorch Unofficial PyTorch implementation of Neural Additive Models (NAM) by Agarwal, et al. [abs, pdf] Installation You can access nam-pytorch vi

Rishabh Anand 11 Mar 14, 2022
MicroNet: Improving Image Recognition with Extremely Low FLOPs (ICCV 2021)

MicroNet: Improving Image Recognition with Extremely Low FLOPs (ICCV 2021) A pytorch implementation of MicroNet. If you use this code in your research

Yunsheng Li 293 Dec 28, 2022
Pytorch implementation of Supporting Clustering with Contrastive Learning, NAACL 2021

Supporting Clustering with Contrastive Learning SCCL (NAACL 2021) Dejiao Zhang, Feng Nan, Xiaokai Wei, Shangwen Li, Henghui Zhu, Kathleen McKeown, Ram

231 Jan 05, 2023
Official implementation of FCL-taco2: Fast, Controllable and Lightweight version of Tacotron2 @ ICASSP 2021

FCL-Taco2: Towards Fast, Controllable and Lightweight Text-to-Speech synthesis (ICASSP 2021) Paper | Demo Block diagram of FCL-taco2, where the decode

Disong Wang 39 Sep 28, 2022
Official pytorch implementation of "Feature Stylization and Domain-aware Contrastive Loss for Domain Generalization" ACMMM 2021 (Oral)

Feature Stylization and Domain-aware Contrastive Loss for Domain Generalization This is an official implementation of "Feature Stylization and Domain-

22 Sep 22, 2022
CVPR 2021: "Generating Diverse Structure for Image Inpainting With Hierarchical VQ-VAE"

Diverse Structure Inpainting ArXiv | Papar | Supplementary Material | BibTex This repository is for the CVPR 2021 paper, "Generating Diverse Structure

152 Nov 04, 2022
SmartSim Infrastructure Library.

Home Install Documentation Slack Invite Cray Labs SmartSim SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and Ten

Cray Labs 139 Jan 01, 2023
Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Nikolas Petrou 1 Jan 13, 2022
Deep Hedging Demo - An Example of Using Machine Learning for Derivative Pricing.

Deep Hedging Demo Pricing Derivatives using Machine Learning 1) Jupyter version: Run ./colab/deep_hedging_colab.ipynb on Colab. 2) Gui version: Run py

Yu Man Tam 102 Jan 06, 2023
TorchGeo is a PyTorch domain library, similar to torchvision, that provides datasets, transforms, samplers, and pre-trained models specific to geospatial data.

TorchGeo is a PyTorch domain library, similar to torchvision, that provides datasets, transforms, samplers, and pre-trained models specific to geospatial data.

Microsoft 1.3k Dec 30, 2022
Portfolio asset allocation strategies: from Markowitz to RNNs

Portfolio asset allocation strategies: from Markowitz to RNNs Research project to explore different approaches for optimal portfolio allocation starti

Luigi Filippo Chiara 1 Feb 05, 2022
Dual Attention Network for Scene Segmentation (CVPR2019)

Dual Attention Network for Scene Segmentation(CVPR2019) Jun Fu, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao, Zhiwei Fang,and Hanqing Lu Introduction W

Jun Fu 2.2k Dec 28, 2022
Official PyTorch implementation of "The Center of Attention: Center-Keypoint Grouping via Attention for Multi-Person Pose Estimation" (ICCV 21).

CenterGroup This the official implementation of our ICCV 2021 paper The Center of Attention: Center-Keypoint Grouping via Attention for Multi-Person P

Dynamic Vision and Learning Group 43 Dec 25, 2022
Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language (NeurIPS 2021)

VRDP (NeurIPS 2021) Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language Mingyu Ding, Zhenfang Chen, Tao Du, Pin

Mingyu Ding 36 Sep 20, 2022
Multiple style transfer via variational autoencoder

ST-VAE Multiple style transfer via variational autoencoder By Zhi-Song Liu, Vicky Kalogeiton and Marie-Paule Cani This repo only provides simple testi

13 Oct 29, 2022