Official PyTorch implementation of "AASIST: Audio Anti-Spoofing using Integrated Spectro-Temporal Graph Attention Networks"

Related tags

Deep Learningaasist
Overview

AASIST

This repository provides the overall framework for training and evaluating audio anti-spoofing systems proposed in 'AASIST: Audio Anti-Spoofing using Integrated Spectro-Temporal Graph Attention Networks'

Getting started

requirements.txt must be installed for execution. We state our experiment environment for those who prefer to simulate as similar as possible.

  • Installing dependencies
pip install -r requirements.txt
  • Our environment (for GPU training)
    • Based on a docker image: pytorch:1.6.0-cuda10.1-cudnn7-runtime
    • GPU: 1 NVIDIA Tesla V100
      • About 16GB is required to train AASIST using a batch size of 24
    • gpu-driver: 418.67

Data preparation

We train/validate/evaluate AASIST using the ASVspoof 2019 logical access dataset.

python ./download_dataset.py

Training

The main.py includes train/validation/evaluation.

To train AASIST [1]:

python main.py --config ./config/AASIST.conf

To train AASIST-L [1]:

python main.py --config ./config/AASIST-L.conf

Training baselines

We additionally enabled the training of RawNet2[2] and RawGAT-ST[3].

To Train RawNet2 [2]:

python main.py --config ./config/RawNet2_baseline.conf

To train RawGAT-ST [3]:

python main.py --config ./config/RawGATST_baseline.conf

Pre-trained models

We provide pre-trained AASIST and AASIST-L.

To evaluate AASIST [1]:

  • It shows EER: 0.83%, min t-DCF: 0.0275
python main.py --eval --config ./config/AASIST.conf

To evaluate AASIST-L [1]:

  • It shows EER: 0.99%, min t-DCF: 0.0309
  • Model has 85306 parameters
python main.py --eval --config ./config/AASIST-L.conf

Developing custom models

Simply by adding a configuration file and a model architecture, one can train and evaluate their models.

To train a custom model:

1. Define your model
  - The model should be a class named "Model"
2. Make a configuration by modifying "model_config"
  - architecture: filename of your model.
  - hyper-parameters to be tuned can be also passed using variables in "model_config"
3. run python main.py --config {CUSTOM_CONFIG_NAME}

License

Copyright (c) 2021-present NAVER Corp.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Acknowledgements

This repository is built on top of several open source projects.

The repository for baseline RawGAT-ST model will be open

References

[1] AASIST: Audio Anti-Spoofing using Integrated Spectro-Temporal Graph Attention Networks

@INPROCEEDINGS{Jung2021AASIST,
  author={Jung, Jee-weon and Heo, Hee-Soo and Tak, Hemlata and Shim, Hye-jin and Chung, Joon Son and Lee, Bong-Jin and Yu, Ha-Jin and Evans, Nicholas},
  booktitle={arXiv}, 
  title={AASIST: Audio Anti-Spoofing using Integrated Spectro-Temporal Graph Attention Networks}, 
  year={2021},
  pages

[2] End-to-End anti-spoofing with RawNet2

@INPROCEEDINGS{Tak2021End,
  author={Tak, Hemlata and Patino, Jose and Todisco, Massimiliano and Nautsch, Andreas and Evans, Nicholas and Larcher, Anthony},
  booktitle={IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, 
  title={End-to-End anti-spoofing with RawNet2}, 
  year={2021},
  pages={6369-6373}
}

[3] End-to-end spectro-temporal graph attention networks for speaker verification anti-spoofing and speech deepfake detection

@inproceedings{tak21_asvspoof,
  author={Tak, Hemlata and Jung, Jee-weon and Patino, Jose and Kamble, Madhu and Todisco, Massimiliano and Evans, Nicholas},
  title={{End-to-end spectro-temporal graph attention networks for speaker verification anti-spoofing and speech deepfake detection}},
  year=2021,
  booktitle={Proc. 2021 Edition of the Automatic Speaker Verification and Spoofing Countermeasures Challenge},
  pages={1--8},
  doi={10.21437/ASVSPOOF.2021-1}
Owner
Clova AI Research
Open source repository of Clova AI Research, NAVER & LINE
Clova AI Research
Implementing DeepMind's Fast Reinforcement Learning paper

Fast Reinforcement Learning This is a repo where I implement the algorithms in the paper, Fast reinforcement learning with generalized policy updates.

Marcus Chiam 6 Nov 28, 2022
STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech

STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech Keon Lee, Ky

Keon Lee 114 Dec 12, 2022
This repository provides code for "On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness".

On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness This repository provides the code for the paper On Interaction B

Meta Research 33 Dec 08, 2022
Pytorch implementation of Masked Auto-Encoder

Masked Auto-Encoder (MAE) Pytorch implementation of Masked Auto-Encoder: Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick

Jiyuan 22 Dec 13, 2022
Mmdet benchmark with python

mmdet_benchmark 本项目是为了研究 mmdet 推断性能瓶颈,并且对其进行优化。 配置与环境 机器配置 CPU:Intel(R) Core(TM) i9-10900K CPU @ 3.70GHz GPU:NVIDIA GeForce RTX 3080 10GB 内存:64G 硬盘:1T

杨培文 (Yang Peiwen) 24 May 21, 2022
A library for augmentation of a YOLO-formated dataset

YOLO Dataset Augmentation lib Инструкция по использованию этой библиотеки Запуск всех файлов осуществлять из консоли. GoogleCrawl_to_Dataset.py Это ск

Egor Orel 1 Dec 10, 2022
A customisable game where you have to quickly click on black tiles in order of appearance while avoiding clicking on white squares.

W.I.P-Aim-Memory-Game A customisable game where you have to quickly click on black tiles in order of appearance while avoiding clicking on white squar

dE_soot 1 Dec 08, 2021
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

76 Jan 03, 2023
Deep Markov Factor Analysis (NeurIPS2021)

Deep Markov Factor Analysis (DMFA) Codes and experiments for deep Markov factor analysis (DMFA) model accepted for publication at NeurIPS2021: A. Farn

Sarah Ostadabbas 2 Dec 16, 2022
Privacy-Preserving Machine Learning (PPML) Tutorial Presented at PyConDE 2022

PPML: Machine Learning on Data you cannot see Repository for the tutorial on Privacy-Preserving Machine Learning (PPML) presented at PyConDE 2022 Abst

Valerio Maggio 10 Aug 16, 2022
Garbage classification using structure data.

垃圾分类模型使用说明 1.包含以下数据文件 文件 描述 data/MaterialMapping.csv 物体以及其归类的信息 data/TestRecords 光谱原始测试数据 CSV 文件 data/TestRecordDesc.zip CSV 文件描述文件 data/Boundaries.cs

wenqi 1 Dec 10, 2021
FAMIE is a comprehensive and efficient active learning (AL) toolkit for multilingual information extraction (IE)

FAMIE: A Fast Active Learning Framework for Multilingual Information Extraction

18 Sep 01, 2022
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

This repository holds NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pytorch. Some of the code here will be included in upstream Pytorch eventually. The intenti

NVIDIA Corporation 6.9k Jan 03, 2023
Experimental solutions to selected exercises from the book [Advances in Financial Machine Learning by Marcos Lopez De Prado]

Advances in Financial Machine Learning Exercises Experimental solutions to selected exercises from the book Advances in Financial Machine Learning by

Brian 1.4k Jan 04, 2023
Restricted Boltzmann Machines in Python.

How to Use First, initialize an RBM with the desired number of visible and hidden units. rbm = RBM(num_visible = 6, num_hidden = 2) Next, train the m

Edwin Chen 928 Dec 30, 2022
ConformalLayers: A non-linear sequential neural network with associative layers

ConformalLayers: A non-linear sequential neural network with associative layers ConformalLayers is a conformal embedding of sequential layers of Convo

Prograf-UFF 5 Sep 28, 2022
Yas CRNN model training - Yet Another Genshin Impact Scanner

Yas-Train Yet Another Genshin Impact Scanner 又一个原神圣遗物导出器 介绍 该仓库为 Yas 的模型训练程序 相关资料 MobileNetV3 CRNN 使用 假设你会设置基本的pytorch环境。 生成数据集 python main.py gen 训练

wormtql 18 Jan 08, 2023
Official PyTorch implementation of paper: Standardized Max Logits: A Simple yet Effective Approach for Identifying Unexpected Road Obstacles in Urban-Scene Segmentation (ICCV 2021 Oral Presentation)

SML (ICCV 2021, Oral) : Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Standardi

SangHun 61 Dec 27, 2022
pytorch implementation of the ICCV'21 paper "MVTN: Multi-View Transformation Network for 3D Shape Recognition"

MVTN: Multi-View Transformation Network for 3D Shape Recognition (ICCV 2021) By Abdullah Hamdi, Silvio Giancola, Bernard Ghanem Paper | Video | Tutori

Abdullah Hamdi 64 Jan 03, 2023