Official PyTorch implementation of paper: Standardized Max Logits: A Simple yet Effective Approach for Identifying Unexpected Road Obstacles in Urban-Scene Segmentation (ICCV 2021 Oral Presentation)

Overview

SML (ICCV 2021, Oral) : Official Pytorch Implementation

This repository provides the official PyTorch implementation of the following paper:

Standardized Max Logits: A Simple yet Effective Approach for Identifying Unexpected Road Obstacles in Urban-Scene Segmentation
Sanghun Jung* (KAIST AI), Jungsoo Lee* (KAIST AI), Daehoon Gwak (KAIST AI)
Sungha Choi (LG AI Research), and Jaegul Choo (KAIST AI) (*: equal contribution)
ICCV 2021 (Oral)

Paper: arxiv

Youtube Video (English): Youtube

Abstract: Identifying unexpected objects on roads in semantic segmentation (e.g., identifying dogs on roads) is crucial in safety-critical applications. Existing approaches use images of unexpected objects from external datasets or require additional training (e.g., retraining segmentation networks or training an extra network), which necessitate a non-trivial amount of labor intensity or lengthy inference time. One possible alternative is to use prediction scores of a pre-trained network such as the max logits (i.e., maximum values among classes before the final softmax layer) for detecting such objects. However, the distribution of max logits of each predicted class is significantly different from each other, which degrades the performance of identifying unexpected objects in urban-scene segmentation. To address this issue, we propose a simple yet effective approach that standardizes the max logits in order to align the different distributions and reflect the relative meanings of max logits within each predicted class. Moreover, we consider the local regions from two different perspectives based on the intuition that neighboring pixels share similar semantic information. In contrast to previous approaches, our method does not utilize any external datasets or require additional training, which makes our method widely applicable to existing pre-trained segmentation models. Such a straightforward approach achieves a new state-of-the-art performance on the publicly available Fishyscapes Lost & Found leaderboard with a large margin.

Code Contributors

Sanghun Jung [Website] [LinkedIn] [Google Scholar] (KAIST AI)
Jungsoo Lee [Website] [LinkedIn] [Google Scholar] (KAIST AI)

Concept Video

Click the figure to watch the youtube video of our paper!

Youtube Video

Pytorch Implementation

Installation

Clone this repository.

git clone https://github.com/shjung13/Standardized-max-logits.git
cd Standardized-max-logits
pip install -r requirements.txt

Cityscapes data directory

cityscapes
 └ leftImg8bit_trainvaltest
   └ leftImg8bit
     └ train
     └ val
     └ test
 └ gtFine_trainvaltest
   └ gtFine
     └ train
     └ val
     └ test

OoD data directory

Fishyscapes (OoD Dataset)
 └ leftImg8bit_trainvaltest
   └ leftImg8bit
     └ val
 └ gtFine_trainvaltest
   └ gtFine
     └ val

How to Run

Train the segmentation model

CUDA_VISIBLE_DEVICES=0,1 ./scripts/train_r101_os8.sh

Obtain statistics from training samples

CUDA_VISIBLE_DEVICES=0 ./scripts/calc_stat_r101_os8.sh

Evaluate on Out-of-Distribution dataset

Download the pretrained model here and after creating "<Directory Home>/pretrained", place it under the folder.

CUDA_VISIBLE_DEVICES=0 python eval.py --ood_dataset_path <path_to_OoD_dataset>

Quantitative / Qualitative Evaluation

Fishyscapes Learboard

Identified OoD pixels (colored white)

Fishyscapes Leaderboard

Our result is also available at fishyscapes.com.

Citation

@InProceedings{Jung_2021_ICCV,
    author    = {Jung, Sanghun and Lee, Jungsoo and Gwak, Daehoon and Choi, Sungha and Choo, Jaegul},
    title     = {Standardized Max Logits: A Simple yet Effective Approach for Identifying Unexpected Road Obstacles in Urban-Scene Segmentation},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {15425-15434}
}

Acknowledgments

We deeply appreciate Hermann Blum and FishyScapes team for their sincere help in providing the baseline performances and helping our team to update our model on the FishyScapes Leaderboard. Our pytorch implementation is heavily derived from NVIDIA segmentation and RobustNet. Thanks to the NVIDIA implementations.

Owner
SangHun
SangHun
Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'.

Non-Rigid Neural Radiance Fields This is the official repository for the project "Non-Rigid Neural Radiance Fields: Reconstruction and Novel View Synt

Facebook Research 296 Dec 29, 2022
A Python wrapper for Google Tesseract

Python Tesseract Python-tesseract is an optical character recognition (OCR) tool for python. That is, it will recognize and "read" the text embedded i

Matthias A Lee 4.6k Jan 05, 2023
Repository for reproducing `Model-Based Robust Deep Learning`

Model-Based Robust Deep Learning (MBRDL) In this repository, we include the code necessary for reproducing the code used in Model-Based Robust Deep Le

Alex Robey 16 Sep 19, 2022
A graphical Semi-automatic annotation tool based on labelImg and Yolov5

💕YOLOV5 semi-automatic annotation tool (Based on labelImg)

EricFang 247 Jan 05, 2023
This repository contains the code for EMNLP-2021 paper "Word-Level Coreference Resolution"

Word-Level Coreference Resolution This is a repository with the code to reproduce the experiments described in the paper of the same name, which was a

79 Dec 27, 2022
source code of “Visual Saliency Transformer” (ICCV2021)

Visual Saliency Transformer (VST) source code for our ICCV 2021 paper “Visual Saliency Transformer” by Nian Liu, Ni Zhang, Kaiyuan Wan, Junwei Han, an

89 Dec 21, 2022
This repository contains a PyTorch implementation of "AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis".

AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis | Project Page | Paper | PyTorch implementation for the paper "AD-NeRF: Audio

551 Dec 29, 2022
Genetic feature selection module for scikit-learn

sklearn-genetic Genetic feature selection module for scikit-learn Genetic algorithms mimic the process of natural selection to search for optimal valu

Manuel Calzolari 260 Dec 14, 2022
This is a tensorflow-based rotation detection benchmark, also called AlphaRotate.

AlphaRotate: A Rotation Detection Benchmark using TensorFlow Abstract AlphaRotate is maintained by Xue Yang with Shanghai Jiao Tong University supervi

yangxue 972 Jan 05, 2023
Machine Learning automation and tracking

The Open-Source MLOps Orchestration Framework MLRun is an open-source MLOps framework that offers an integrative approach to managing your machine-lea

873 Jan 04, 2023
A benchmark dataset for emulating atmospheric radiative transfer in weather and climate models with machine learning (NeurIPS 2021 Datasets and Benchmarks Track)

ClimART - A Benchmark Dataset for Emulating Atmospheric Radiative Transfer in Weather and Climate Models Official PyTorch Implementation Using deep le

21 Dec 31, 2022
AI-UPV at IberLEF-2021 EXIST task: Sexism Prediction in Spanish and English Tweets Using Monolingual and Multilingual BERT and Ensemble Models

AI-UPV at IberLEF-2021 EXIST task: Sexism Prediction in Spanish and English Tweets Using Monolingual and Multilingual BERT and Ensemble Models Descrip

Angel de Paula 1 Jun 08, 2022
Official code for "Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight Transformer. ICCV2021".

Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight Transformer. ICCV2021. Introduction We proposed a novel model training paradi

Lucas 103 Dec 14, 2022
The official PyTorch code implementation of "Human Trajectory Prediction via Counterfactual Analysis" in ICCV 2021.

Human Trajectory Prediction via Counterfactual Analysis (CausalHTP) The official PyTorch code implementation of "Human Trajectory Prediction via Count

46 Dec 03, 2022
Official PyTorch implementation of U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation

U-GAT-IT — Official PyTorch Implementation : Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Imag

Hyeonwoo Kang 2.4k Jan 04, 2023
[ICML 2020] Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control

PG-MORL This repository contains the implementation for the paper Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Contro

MIT Graphics Group 65 Jan 07, 2023
RobustART: Benchmarking Robustness on Architecture Design and Training Techniques

The first comprehensive Robustness investigation benchmark on large-scale dataset ImageNet regarding ARchitecture design and Training techniques towards diverse noises.

132 Dec 23, 2022
Deep learning model for EEG artifact removal

DeepSeparator Introduction Electroencephalogram (EEG) recordings are often contaminated with artifacts. Various methods have been developed to elimina

23 Dec 21, 2022
High accurate tool for automatic faces detection with landmarks

faces_detanator High accurate tool for automatic faces detection with landmarks. The library is based on public detectors with high accuracy (TinaFace

Ihar 7 May 10, 2022
Crab is a flexible, fast recommender engine for Python that integrates classic information filtering recommendation algorithms in the world of scientific Python packages (numpy, scipy, matplotlib).

Crab - A Recommendation Engine library for Python Crab is a flexible, fast recommender engine for Python that integrates classic information filtering r

python-recsys 1.2k Dec 21, 2022