[ICML 2020] Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control

Overview

PG-MORL

This repository contains the implementation for the paper Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control (ICML 2020).

In this paper, we propose an evolutionary learning algorithm to compute a high-quality and dense Pareto solutions for multi-objective continuous robot control problems. We also design seven multi-objective continuous control benchmark problems based on Mujoco, which are also included in this repository. This repository also contains the code for the baseline algorithms in the paper.

teaser

Installation

Prerequisites

  • Operating System: tested on Ubuntu 16.04 and Ubuntu 18.04.
  • Python Version: >= 3.7.4.
  • PyTorch Version: >= 1.3.0.
  • MuJoCo : install mujoco and mujoco-py of version 2.0 by following the instructions in mujoco-py.

Install Dependencies

You can either install the dependencies in a conda virtual env (recomended) or manually.

For conda virtual env installation, simply create a virtual env named pgmorl by:

conda env create -f environment.yml

If you prefer to install all the dependencies by yourself, you could open environment.yml in editor to see which packages need to be installed by pip.

Run the Code

The training related code are in the folder morl. We provide the scripts in scrips folder to run our algorithm/baseline algorithms on each problem described in the paper, and also provide several visualization scripts in scripts/plot folder for you to visualize the computed Pareto policies and the training process.

Precomputed Pareto Results

While you can run the training code the compute the Pareto policies from scratch by following the training steps below, we also provide the precomputed Pareto results for each problem. You can download them for each problem separately in this google drive link and directly visualize them with the visualization instructions to play with the results. After downloading the precomputed results, you can unzip it, create a results folder under the project root directory, and put the downloaded file inside.

Benchmark Problems

We design seven multi-objective continuous control benchmark problems based on Mujoco simulation, including Walker2d-v2, HalfCheetah-v2, Hopper-v2, Ant-v2, Swimmer-v2, Humanoid-v2, and Hopper-v3. A suffix of -v3 indicates a three-objective problem. The reward (i.e. objective) functions in each problem are designed to have similar scales. All environments code can be found in environments/mujoco folder. To avoid conflicting to the original mujoco environment names, we add a MO- prefix to the name of each environment. For example, the environment name for Walker2d-v2 is MO-Walker2d-v2.

Train

The main entrance of the training code is at morl/run.py. We provide a training script in scripts folder for each problem for you to easily start with. You can just follow the following steps to see how to run the training for each problem by each algorithm (our algorithm and baseline algorithms).

  • Enter the project folder

    cd PGMORL
    
  • Activate the conda env:

    conda activate pgmorl
    
  • To run our algorithm on Walker2d-v2 for a single run:

    python scripts/walker2d-v2.py --pgmorl --num-seeds 1 --num-processes 1
    

    You can also set other flags as arguments to run the baseline algorithms (e.g. --ra, --moead, --pfa, --random). Please refer to the python scripts for more details about the arguments.

  • By default, the results are stored in results/[problem name]/[algorithm name]/[seed idx].

Visualization

  • We provide a script to visualize the computed/downloaded Pareto results.

    python scripts/plot/ep_obj_visualize_2d.py --env MO-Walker2d-v2 --log-dir ./results/Walker2d-v2/pgmorl/0/
    

    You can replace MO-Walker2d-v2 to your problem name, and replace the ./results/Walker2d-v2/pgmorl/0 by the path to your stored results.

    It will show a plot of the computed Pareto policies in the performance space. By double-click the point in the plot, it will automatically open a new window and render the simulation for the selected policy.

  • We also provide a script to help you visualize the evolution process of the policy population.

    python scripts/plot/training_visualize_2d.py --env MO-Walker2d-v2 --log-dir ./results/Walker2d-v2/pgmorl/0/
    

    It will plot the policy population (gray points) in each generation with some other useful information. The black points are the policies on the Pareto front, the green circles are the selected policies to be optimized in next generation, the red points are the predicted offsprings and the green points are the real offsprings. You can interact with the plot with the keyboard. For example, be pressing left/right, you can evolve the policy population by generation. You can refer to the plot scripts for the full description of the allowable operations.

Reproducibility

We run all our experiments on VM instances with 96 Intel Skylake vCPUs and 86.4G memory on Google Cloud Platform without GPU.

Acknowledgement

We use the implementation of pytorch-a2c-ppo-acktr-gail as the underlying PPO implementation and modify it into our Multi-Objective Policy Gradient algorithm.

Citation

If you find our paper or code is useful, please consider citing:

@inproceedings{xu2020prediction,
  title={Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control},
  author={Xu, Jie and Tian, Yunsheng and Ma, Pingchuan and Rus, Daniela and Sueda, Shinjiro and Matusik, Wojciech},
  booktitle={Proceedings of the 37th International Conference on Machine Learning},
  year={2020}
}
Gin provides a lightweight configuration framework for Python

Gin Config Authors: Dan Holtmann-Rice, Sergio Guadarrama, Nathan Silberman Contributors: Oscar Ramirez, Marek Fiser Gin provides a lightweight configu

Google 1.7k Jan 03, 2023
This is a code repository for the paper "Graph Auto-Encoders for Financial Clustering".

Repository for the paper "Graph Auto-Encoders for Financial Clustering" Requirements Python 3.6 torch torch_geometric Instructions This is a simple c

Edward Turner 1 Dec 02, 2021
A tool to visualise the results of AlphaFold2 and inspect the quality of structural predictions

AlphaFold Analyser This program produces high quality visualisations of predicted structures produced by AlphaFold. These visualisations allow the use

Oliver Powell 3 Nov 13, 2022
RealFormer-Pytorch Implementation of RealFormer using pytorch

RealFormer-Pytorch Implementation of RealFormer using pytorch. Includes comparison with classical Transformer on image classification task (ViT) wrt C

Simo Ryu 90 Dec 08, 2022
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

Jia Research Lab 115 Dec 23, 2022
SwinIR: Image Restoration Using Swin Transformer

SwinIR: Image Restoration Using Swin Transformer This repository is the official PyTorch implementation of SwinIR: Image Restoration Using Shifted Win

Jingyun Liang 2.4k Jan 08, 2023
This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Developed By Google!

Machine Learning Hand Detector This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Dev

Popstar Idhant 3 Feb 25, 2022
ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs

(Comet-) ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs Paper Jena D. Hwang, Chandra Bhagavatula, Ronan Le Bras, Jeff Da, Keisuke Sa

AI2 152 Dec 27, 2022
A fast, dataset-agnostic, deep visual search engine for digital art history

imgs.ai imgs.ai is a fast, dataset-agnostic, deep visual search engine for digital art history based on neural network embeddings. It utilizes modern

Fabian Offert 5 Dec 14, 2022
Automatic Differentiation Multipole Moment Molecular Forcefield

Automatic Differentiation Multipole Moment Molecular Forcefield Performance notes On a single gpu, using waterbox_31ang.pdb example from MPIDplugin wh

4 Jan 07, 2022
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Ă–zdemir Cetin & Heinz Koeppl | Pr

Christoph Reich 23 Sep 21, 2022
A fast poisson image editing implementation that can utilize multi-core CPU or GPU to handle a high-resolution image input.

Poisson Image Editing - A Parallel Implementation Jiayi Weng (jiayiwen), Zixu Chen (zixuc) Poisson Image Editing is a technique that can fuse two imag

Jiayi Weng 110 Dec 27, 2022
A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal

A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal, but extensible training loop which is flexible enough to handle the majority of use cases,

Chris Hughes 110 Dec 23, 2022
[NeurIPS 2021] Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving Objects

[NeurIPS 2021] Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving Objects YouTube | arXiv Prerequisites Kaolin is available here:

Denys Rozumnyi 107 Dec 26, 2022
Decensoring Hentai with Deep Neural Networks. Formerly named DeepMindBreak.

DeepCreamPy Decensoring Hentai with Deep Neural Networks. Formerly named DeepMindBreak. A deep learning-based tool to automatically replace censored a

616 Jan 06, 2023
PyTorch implementation of SmoothGrad: removing noise by adding noise.

SmoothGrad implementation in PyTorch PyTorch implementation of SmoothGrad: removing noise by adding noise. Vanilla Gradients SmoothGrad Guided backpro

SSKH 143 Jan 05, 2023
Compare GAN code.

Compare GAN This repository offers TensorFlow implementations for many components related to Generative Adversarial Networks: losses (such non-saturat

Google 1.8k Jan 05, 2023
Codebase to experiment with a hybrid Transformer that combines conditional sequence generation with regression

Regression Transformer Codebase to experiment with a hybrid Transformer that combines conditional sequence generation with regression . Development se

International Business Machines 27 Jan 05, 2023
Official PyTorch implementation of paper: Standardized Max Logits: A Simple yet Effective Approach for Identifying Unexpected Road Obstacles in Urban-Scene Segmentation (ICCV 2021 Oral Presentation)

SML (ICCV 2021, Oral) : Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Standardi

SangHun 61 Dec 27, 2022
Adversarial examples to the new ConvNeXt architecture

Adversarial examples to the new ConvNeXt architecture To get adversarial examples to the ConvNeXt architecture, run the Colab: https://github.com/stan

Stanislav Fort 19 Sep 18, 2022