pyspark🍒🥭 is delicious,just eat it!😋😋

Overview

如何用10天吃掉pyspark? 🔥 🔥

《10天吃掉那只pyspark》

《20天吃掉那只Pytorch》

《30天吃掉那只TensorFlow2》

一,pyspark 🍎 or spark-scala 🔥 ?

pyspark强于分析,spark-scala强于工程。

如果应用场景有非常高的性能需求,应该选择spark-scala.

如果应用场景有非常多的可视化和机器学习算法需求,推荐使用pyspark,可以更好地和python中的相关库配合使用。

此外spark-scala支持spark graphx图计算模块,而pyspark是不支持的。


pyspark学习曲线平缓,spark-scala学习曲线陡峭。

从学习成本来说,spark-scala学习曲线陡峭,不仅因为scala是一门困难的语言,更加因为在前方的道路上会有无尽的环境配置痛苦等待着读者。

而pyspark学习成本相对较低,环境配置相对容易。从学习成本来说,如果说pyspark的学习成本是3,那么spark-scala的学习成本大概是9。

如果读者有较强的学习能力和充分的学习时间,建议选择spark-scala,能够解锁spark的全部技能,并获得最优性能,这也是工业界最普遍使用spark的方式。

如果读者学习时间有限,并对Python情有独钟,建议选择pyspark。pyspark在工业界的使用目前也越来越普遍。


二,本书 📚 面向读者 🤗

本书假定读者具有基础的的Python编码能力,熟悉Python中numpy, pandas库的基本用法。

并且假定读者具有一定的SQL使用经验,熟悉select,join,group by等sql语法。

对于Python基础不是非常扎实的读者,可以参考《3小时Python入门》文章。

《3小时Python入门》

对于numpy和Pandas不甚了解的读者,可以参考 《3小时入门numpy,pandas,matplotlib》文章。

《3小时入门numpy,pandas,matplotlib》


三,本书写作风格 🍉

本书是一本对人类用户极其友善的pyspark入门工具书,Don't let me think是本书的最高追求。

本书主要是在参考spark官方文档,并结合作者学习使用经验基础上整理总结写成的。

不同于Spark官方文档的繁冗断码,本书在篇章结构和范例选取上做了大量的优化,在用户友好度方面更胜一筹。

本书按照内容难易程度、读者检索习惯和spark自身的层次结构设计内容,循序渐进,层次清晰,方便按照功能查找相应范例。

本书在范例设计上尽可能简约化和结构化,增强范例易读性和通用性,大部分代码片段在实践中可即取即用。

如果说通过学习spark官方文档掌握pyspark的难度大概是5,那么通过本书学习掌握pyspark的难度应该大概是2.

仅以下图对比spark官方文档与本书《10天吃掉那只pyspark》的差异。


四,本书学习方案

1,学习计划

本书是作者利用工作之余大概1个月写成的,大部分读者应该在10天可以完全学会。

预计每天花费的学习时间在30分钟到2个小时之间。

当然,本书也非常适合作为pyspark的工具手册在工程落地时作为范例库参考。

点击学习内容蓝色标题即可进入该章节。

日期 学习内容 内容难度 预计学习时间 更新状态
  一、基础篇      
day1 1-1,快速搭建你的Spark开发环境 ⭐️ ⭐️ 1hour
day2 1-2,1小时看懂Spark的基本原理 ⭐️ ⭐️ ⭐️ 1hour
  二、核心篇      
day3 2-1,2小时入门Spark之RDD编程 ⭐️ ⭐️ ⭐️ 2hour
day4 2-2,7道RDD编程练习题 ⭐️ ⭐️ ⭐️ 1hour
day5 2-3,2小时入门SparkSQL编程 ⭐️ ⭐️ ⭐️ 2hour
day6 2-4,7道SparkSQL编程练习题 ⭐️ ⭐️ ⭐️ 1hour
  三、进阶篇      
day7 3-1,Spark性能调优方法 ⭐️ ⭐️ ⭐️ ⭐️ ⭐️ 2hour
day8 3-2,RDD和SparkSQL综合应用 ⭐️ ⭐️ ⭐️ ⭐️ ⭐️ 2hour
  四、拓展篇      
day9 4-1,探索MLlib机器学习 ⭐️ ⭐️ ⭐️ ⭐️ 2hour
day10 4-2,初识StructuredStreaming ⭐️ ⭐️ ⭐️ ⭐️ 2hour

2,学习环境

本书全部源码在jupyter中编写测试通过,建议通过git克隆到本地,并在jupyter中交互式运行学习。

为了直接能够在jupyter中打开markdown文件,建议安装jupytext,将markdown转换成ipynb文件。

为简单起见,本书按照如下2个步骤配置单机版spark3.0.1环境进行练习。

step1: 安装java8

jdk下载地址:https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

java安装教程:https://www.runoob.com/java/java-environment-setup.html

step2: 安装pyspark,findspark

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pyspark

pip install findspark

此外,也可以在kesci云端notebook中直接运行pyspark

https://www.kesci.com/home/project

import findspark

#指定spark_home,指定python路径
spark_home = "/Users/liangyun/anaconda3/lib/python3.7/site-packages/pyspark"
python_path = "/Users/liangyun/anaconda3/bin/python"
findspark.init(spark_home,python_path)

import pyspark 
from pyspark import SparkContext, SparkConf
conf = SparkConf().setAppName("test").setMaster("local[4]")
sc = SparkContext(conf=conf)

print("spark version:",pyspark.__version__)
rdd = sc.parallelize(["hello","spark"])
print(rdd.reduce(lambda x,y:x+' '+y))
spark version: 3.0.1
hello spark

除了以上方法外,也可以参考1-1节中介绍的其它方法。

1-1,快速搭建你的Spark开发环境


五,鼓励和联系作者

如果本书对你有所帮助,想鼓励一下作者,记得给本项目加一颗星星star ⭐️ ,并分享给你的朋友们喔 😊 !

如果对本书内容理解上有需要进一步和作者交流的地方,欢迎在公众号"算法美食屋"下留言。作者时间和精力有限,会酌情予以回复。

也可以在公众号后台回复关键字:spark加群,加入spark和大数据读者交流群和大家讨论。

image.png


Owner
lyhue1991
dream-->design-->deliever😋😋
lyhue1991
Joint detection and tracking model named DEFT, or ``Detection Embeddings for Tracking.

DEFT: Detection Embeddings for Tracking DEFT: Detection Embeddings for Tracking, Mohamed Chaabane, Peter Zhang, J. Ross Beveridge, Stephen O'Hara

Mohamed Chaabane 253 Dec 18, 2022
UnpNet - Rethinking 3-D LiDAR Point Cloud Segmentation(IEEE TNNLS)

UnpNet Citation Please cite the following paper if you use this repository in your reseach. @article {PMID:34914599, Title = {Rethinking 3-D LiDAR Po

Shijie Li 4 Jul 15, 2022
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pytorch Lightning 1.4k Jan 01, 2023
ManipulaTHOR, a framework that facilitates visual manipulation of objects using a robotic arm

ManipulaTHOR: A Framework for Visual Object Manipulation Kiana Ehsani, Winson Han, Alvaro Herrasti, Eli VanderBilt, Luca Weihs, Eric Kolve, Aniruddha

AI2 65 Dec 30, 2022
This repository introduces a short project about Transfer Learning for Classification of MRI Images.

Transfer Learning for MRI Images Classification This repository introduces a short project made during my stay at Neuromatch Summer School 2021. This

Oscar Guarnizo 3 Nov 15, 2022
Data visualization app for H&M competition in kaggle

handm_data_visualize_app Data visualization app by streamlit for H&M competition in kaggle. competition page: https://www.kaggle.com/competitions/h-an

Kyohei Uto 12 Apr 30, 2022
PyTorch code for the ICCV'21 paper: "Always Be Dreaming: A New Approach for Class-Incremental Learning"

Always Be Dreaming: A New Approach for Data-Free Class-Incremental Learning PyTorch code for the ICCV 2021 paper: Always Be Dreaming: A New Approach f

49 Dec 21, 2022
GMFlow: Learning Optical Flow via Global Matching

GMFlow GMFlow: Learning Optical Flow via Global Matching Authors: Haofei Xu, Jing Zhang, Jianfei Cai, Hamid Rezatofighi, Dacheng Tao We streamline the

Haofei Xu 298 Jan 04, 2023
Python scripts for performing lane detection using the LSTR model in ONNX

ONNX LSTR Lane Detection Python scripts for performing lane detection using the Lane Shape Prediction with Transformers (LSTR) model in ONNX. Requirem

Ibai Gorordo 29 Aug 30, 2022
Neural style transfer as a class in PyTorch

pt-styletransfer Neural style transfer as a class in PyTorch Based on: https://github.com/alexis-jacq/Pytorch-Tutorials Adds: StyleTransferNet as a cl

Tyler Kvochick 31 Jun 27, 2022
Catbird is an open source paraphrase generation toolkit based on PyTorch.

Catbird is an open source paraphrase generation toolkit based on PyTorch. Quick Start Requirements and Installation The project is based on PyTorch 1.

Afonso Salgado de Sousa 5 Dec 15, 2022
PyTorch implementation of the Pose Residual Network (PRN)

Pose Residual Network This repository contains a PyTorch implementation of the Pose Residual Network (PRN) presented in our ECCV 2018 paper: Muhammed

Salih Karagoz 289 Nov 28, 2022
The official repo for CVPR2021——ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search.

ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search [paper] Introduction This is the official implementation of ViPNAS: Efficient V

Lumin 42 Sep 26, 2022
Pytorch implementation of RED-SDS (NeurIPS 2021).

Recurrent Explicit Duration Switching Dynamical Systems (RED-SDS) This repository contains a reference implementation of RED-SDS, a non-linear state s

Abdul Fatir 10 Dec 02, 2022
IJON is an annotation mechanism that analysts can use to guide fuzzers such as AFL.

IJON SPACE EXPLORER IJON is an annotation mechanism that analysts can use to guide fuzzers such as AFL. Using only a small (usually one line) annotati

Chair for Sys­tems Se­cu­ri­ty 146 Dec 16, 2022
In this project, we develop a face recognize platform based on MTCNN object-detection netcwork and FaceNet self-supervised network.

模式识别大作业——人脸检测与识别平台 本项目是一个简易的人脸检测识别平台,提供了人脸信息录入和人脸识别的功能。前端采用 html+css+js,后端采用 pytorch,

Xuhua Huang 5 Aug 02, 2022
FedGS: A Federated Group Synchronization Framework Implemented by LEAF-MX.

FedGS: Data Heterogeneity-Robust Federated Learning via Group Client Selection in Industrial IoT Preparation For instructions on generating data, plea

Lizonghang 9 Dec 22, 2022
Densely Connected Convolutional Networks, In CVPR 2017 (Best Paper Award).

Densely Connected Convolutional Networks (DenseNets) This repository contains the code for DenseNet introduced in the following paper Densely Connecte

Zhuang Liu 4.5k Jan 03, 2023
salabim - discrete event simulation in Python

Object oriented discrete event simulation and animation in Python. Includes process control features, resources, queues, monitors. statistical distrib

181 Dec 21, 2022
Source codes for "Structure-Aware Abstractive Conversation Summarization via Discourse and Action Graphs"

Structure-Aware-BART This repo contains codes for the following paper: Jiaao Chen, Diyi Yang:Structure-Aware Abstractive Conversation Summarization vi

GT-SALT 56 Dec 08, 2022