FedGS: A Federated Group Synchronization Framework Implemented by LEAF-MX.

Overview

FedGS: Data Heterogeneity-Robust Federated Learning via Group Client Selection in Industrial IoT

Preparation

  • For instructions on generating data, please go to the folder of the corresponding dataset. For FEMNIST, please refer to femnist.

  • NVIDIA-Docker is required.

  • NVIDIA CUDA version 10.1 and higher is required.

How to run FedGS

Build a docker image

Enter the scripts folder and build a docker image named fedgs.

sudo docker build -f build-env.dockerfile -t fedgs .

Modify /home/lizh/fedgs to your actual project path in scripts/run.sh. Then run scripts/run.sh, which will create a container named fedgs.0 if CONTAINER_RANK is set to 0 and starts the task.

chmod a+x run.sh && ./run.sh

The output logs and models will be stored in a logs folder created automatically. For example, outputs of the FEMNIST task with container rank 0 will be stored in logs/femnist/0/.

Hyperparameters

We categorize hyperparameters into default settings and custom settings, and we will introduce them separately.

Default Hyperparameters

These hyperparameters are included in utils/args.py. We list them in the table below (except for custom hyperparameters), but in general, we do not need to pay attention to them.

Variable Name Default Value Optional Values Description
--seed 0 integer Seed for client selection and batch splitting.
--metrics-name "metrics" string Name for metrics file.
--metrics-dir "metrics" string Folder name for metrics files.
--log-dir "logs" string Folder name for log files.
--use-val-set None None Set this option to use the validation set, otherwise the test set is used. (NOT TESTED)

Custom Hyperparameters

These hyperparameters are included in scripts/run.sh. We list them below.

Environment Variable Default Value Description
CONTAINER_RANK 0 This identify the container (e.g., fedgs.0) and log files (e.g., logs/femnist/0/output.0).
BATCH_SIZE 32 Number of training samples in each batch.
LEARNING_RATE 0.01 Learning rate for local optimizers.
NUM_GROUPS 10 Number of groups.
CLIENTS_PER_GROUP 10 Number of clients selected in each group.
SAMPLER gbp-cs Sampler to be used, can be random, brute, bayesian, probability, ga and gbp-cs.
NUM_SYNCS 50 Number of internal synchronizations in each round.
NUM_ROUNDS 500 Total rounds of external synchronizations.
DATASET femnist Dataset to be used, only FEMNIST is supported currently.
MODEL cnn Neural network model to be used.
EVAL_EVERY 1 Interval rounds for model evaluation.
NUM_GPU_AVAILABLE 2 Number of GPUs available.
NUM_GPU_BEGIN 0 Index of the first available GPU.
IMAGE_NAME fedgs Experimental image to be used.

NOTE: If you wish to specify a GPU device (e.g., GPU0), please set NUM_GPU_AVAILABLE=1 and NUM_GPU_BEGIN=0.

NOTE: This script will mount project files /home/lizh/fedgs from the host into the container /root, so please check carefully whether your file path is correct.

Visualization

The visualizer metrics/visualize.py reads metrics logs (e.g., metrics/metrics_stat_0.csv and metrics/metrics_sys_0.csv) and draws curves of accuracy, loss and so on.

Reference

  • This demo is implemented on LEAF-MX, which is a MXNET implementation of the well-known federated learning framework LEAF.

  • Li, Zonghang, Yihong He, Hongfang Yu, et al. "Data Heterogeneity-Robust Federated Learning via Group Client Selection in Industrial IoT." Submitted to IEEE Internet of Things Journal, (2021).

  • If you get trouble using this repository, please kindly contact us. Our email: [email protected]

Owner
Lizonghang
Intelligent Communication System, Distributed Machine Learning, Federated Learning
Lizonghang
PyTorch implementation of InstaGAN: Instance-aware Image-to-Image Translation

InstaGAN: Instance-aware Image-to-Image Translation Warning: This repo contains a model which has potential ethical concerns. Remark that the task of

Sangwoo Mo 827 Dec 29, 2022
StackRec: Efficient Training of Very Deep Sequential Recommender Models by Iterative Stacking

StackRec: Efficient Training of Very Deep Sequential Recommender Models by Iterative Stacking Datasets You can download datasets that have been pre-pr

25 May 29, 2022
Official PyTorch Implementation of Embedding Transfer with Label Relaxation for Improved Metric Learning, CVPR 2021

Embedding Transfer with Label Relaxation for Improved Metric Learning Official PyTorch implementation of CVPR 2021 paper Embedding Transfer with Label

Sungyeon Kim 37 Dec 06, 2022
This is the official repository of XVFI (eXtreme Video Frame Interpolation)

XVFI This is the official repository of XVFI (eXtreme Video Frame Interpolation), https://arxiv.org/abs/2103.16206 Last Update: 20210607 We provide th

Jihyong Oh 195 Dec 29, 2022
This is an official implementation for "Video Swin Transformers".

Video Swin Transformer By Ze Liu*, Jia Ning*, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin and Han Hu. This repo is the official implementation of "V

Swin Transformer 981 Jan 03, 2023
Source code for CVPR 2020 paper "Learning to Forget for Meta-Learning"

L2F - Learning to Forget for Meta-Learning Sungyong Baik, Seokil Hong, Kyoung Mu Lee Source code for CVPR 2020 paper "Learning to Forget for Meta-Lear

Sungyong Baik 29 May 22, 2022
Satellite labelling tool for manual labelling of storm top features such as overshooting tops, above-anvil plumes, cold U/Vs, rings etc.

Satellite labelling tool About this app A tool for manual labelling of storm top features such as overshooting tops, above-anvil plumes, cold U/Vs, ri

Czech Hydrometeorological Institute - Satellite Department 10 Sep 14, 2022
Implementation of "DeepOrder: Deep Learning for Test Case Prioritization in Continuous Integration Testing".

DeepOrder Implementation of DeepOrder for the paper "DeepOrder: Deep Learning for Test Case Prioritization in Continuous Integration Testing". Project

6 Nov 07, 2022
Tools for computational pathology

A toolkit for computational pathology and machine learning. View documentation Please cite our paper Installation There are several ways to install Pa

254 Dec 12, 2022
A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset.

A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset. This repo contains scripts to train RL agents to navigate the closed world and collect vi

MUGEN 11 Oct 22, 2022
Github project for Attention-guided Temporal Coherent Video Object Matting.

Attention-guided Temporal Coherent Video Object Matting This is the Github project for our paper Attention-guided Temporal Coherent Video Object Matti

71 Dec 19, 2022
This is a Keras-based Python implementation of DeepMask- a complex deep neural network for learning object segmentation masks

NNProject - DeepMask This is a Keras-based Python implementation of DeepMask- a complex deep neural network for learning object segmentation masks. Th

189 Nov 16, 2022
code from "Tensor decomposition of higher-order correlations by nonlinear Hebbian plasticity"

Code associated with the paper "Tensor decomposition of higher-order correlations by nonlinear Hebbian learning," Ocker & Buice, Neurips 2021. "plot_f

Gabriel Koch Ocker 4 Oct 16, 2022
This is the repo of the manuscript "Dual-branch Attention-In-Attention Transformer for speech enhancement"

DB-AIAT: A Dual-branch attention-in-attention transformer for single-channel SE

Guochen Yu 68 Dec 16, 2022
Official implementation for "Image Quality Assessment using Contrastive Learning"

Image Quality Assessment using Contrastive Learning Pavan C. Madhusudana, Neil Birkbeck, Yilin Wang, Balu Adsumilli and Alan C. Bovik This is the offi

Pavan Chennagiri 67 Dec 30, 2022
A unified framework for machine learning with time series

Welcome to sktime A unified framework for machine learning with time series We provide specialized time series algorithms and scikit-learn compatible

The Alan Turing Institute 6k Jan 08, 2023
Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras

Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras This tutorial shows how to use Keras library to build deep ne

Marko Jocić 922 Dec 19, 2022
HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval

HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval [toc] 1. Introduction This repository provides the code for our paper at

13 Dec 08, 2022
Official code for the paper: Deep Graph Matching under Quadratic Constraint (CVPR 2021)

QC-DGM This is the official PyTorch implementation and models for our CVPR 2021 paper: Deep Graph Matching under Quadratic Constraint. It also contain

Quankai Gao 55 Nov 14, 2022
Overview of architecture and implementation of TEDS-Net, as described in MICCAI 2021: "TEDS-Net: Enforcing Diffeomorphisms in Spatial Transformers to Guarantee TopologyPreservation in Segmentations"

TEDS-Net Overview of architecture and implementation of TEDS-Net, as described in MICCAI 2021: "TEDS-Net: Enforcing Diffeomorphisms in Spatial Transfo

Madeleine K Wyburd 14 Jan 04, 2023