Official PyTorch Implementation of Embedding Transfer with Label Relaxation for Improved Metric Learning, CVPR 2021

Overview

Embedding Transfer with Label Relaxation for Improved Metric Learning

Official PyTorch implementation of CVPR 2021 paper Embedding Transfer with Label Relaxation for Improved Metric Learning.

Embedding trnasfer with Relaxed Contrastive Loss improves performance, or reduces sizes and output dimensions of embedding model effectively.

This repository provides source code of experiments on three datasets (CUB-200-2011, Cars-196 and Stanford Online Products) including relaxed contrastive loss, relaxed MS loss, and 6 other knowledge distillation or embedding transfer methods such as:

  • FitNet, Fitnets: hints for thin deep nets
  • Attention, Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Transfer
  • CRD, Contrastive Representation Distillation
  • DarkRank, Darkrank: Accelerating Deep Metric Learning via Cross Sample Similarities Transfer
  • PKT, Learning Deep Representations with Probabilistic Knowledge Transfer
  • RKD, Relational Knowledge Distillation

Overview

Relaxed Contrastive Loss

  • Relaxed contrastive loss exploits pairwise similarities between samples in the source embedding space as relaxed labels, and transfers them through a contrastive loss used for learning target embedding models.

graph

Experimental Restuls

  • Our method achieves the state of the art when embedding dimension is 512, and is as competitive as recent metric learning models even with a substantially smaller embedding dimension. In all experiments, it is superior to other embedding transfer techniques.

graph

Requirements

Prepare Datasets

  1. Download three public benchmarks for deep metric learning.

  2. Extract the tgz or zip file into ./data/ (Exceptionally, for Cars-196, put the files in a ./data/cars196)

Prepare Pretrained Source models

Download the pretrained source models using ./scripts/download_pretrained_source_models.sh.

sh scripts/download_pretrained_source_models.sh

Training Target Embedding Network with Relaxed Contrastive Loss

Self-transfer Setting

  • Transfer the knowledge of source model to target model with the same architecture and embedding dimension for performance improvement.
  • Source Embedding Network (BN–Inception, 512 dim) 🠢 Target Embedding Network (BN–Inception, 512 dim)

CUB-200-2011

python code/train_target.py --gpu-id 0 --loss Relaxed_Contra --model bn_inception \
--embedding-size 512 --batch-size 90 --IPC 2 --dataset cub --epochs 90 \
--source-ckpt ./pretrained_source/bn_inception/cub_bn_inception_512dim_Proxy_Anchor_ckpt.pth \
--view 2 --sigma 1 --delta 1 --save 1

Cars-196

python code/train_target.py --gpu-id 0 --loss Relaxed_Contra --model bn_inception \ 
--embedding-size 512 --batch-size 90 --IPC 2 --dataset cars --epochs 90 \
--source-ckpt ./pretrained_source/bn_inception/cars_bn_inception_512dim_Proxy_Anchor_ckpt.pth \
--view 2 --sigma 1 --delta 1 --save 1

SOP

python code/train_target.py --gpu-id 0 --loss Relaxed_Contra --model bn_inception \
--embedding-size 512 --batch-size 90 --IPC 2 --dataset SOP --epochs 150 \
--source-ckpt ./pretrained_source/bn_inception/SOP_bn_inception_512dim_Proxy_Anchor_ckpt.pth \
--view 2 --sigma 1 --delta 1 --save 1
CUB-200-2011 Cars-196 SOP
Method Backbone [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected]
Source: PA BN512 69.1 78.9 86.1 86.4 91.9 95.0 79.2 90.7 96.2
FitNet BN512 69.9 79.5 86.2 87.6 92.2 95.6 78.7 90.4 96.1
Attention BN512 66.3 76.2 84.5 84.7 90.6 94.2 78.2 90.4 96.2
CRD BN512 67.7 78.1 85.7 85.3 91.1 94.8 78.1 90.2 95.8
DarkRank BN512 66.7 76.5 84.8 84.0 90.0 93.8 75.7 88.3 95.3
PKT BN512 69.1 78.8 86.4 86.4 91.6 94.9 78.4 90.2 96.0
RKD BN512 70.9 80.8 87.5 88.9 93.5 96.4 78.5 90.2 96.0
Ours BN512 72.1 81.3 87.6 89.6 94.0 96.5 79.8 91.1 96.3

Dimensionality Reduction Setting

  • Transfer to the same architecture with a lower embedding dimension for efficient image retrieval.
  • Source Embedding Network (BN–Inception, 512 dim) 🠢 Target Embedding Network (BN–Inception, 64 dim)

CUB-200-2011

python code/train_target.py --gpu-id 0 --loss Relaxed_Contra --model bn_inception \
--embedding-size 64 --batch-size 90 --IPC 2 --dataset cub --epochs 90 \
--source-ckpt ./pretrained_source/bn_inception/cub_bn_inception_512dim_Proxy_Anchor_ckpt.pth \
--view 2 --sigma 1 --delta 1 --save 1

Cars-196

python code/train_target.py --gpu-id 0 --loss Relaxed_Contra --model bn_inception \
--embedding-size 64 --batch-size 90 --IPC 2 --dataset cars --epochs 90 \
--source-ckpt ./pretrained_source/bn_inception/cars_bn_inception_512dim_Proxy_Anchor_ckpt.pth \
--view 2 --sigma 1 --delta 1 --save 1

SOP

python code/train_target.py --gpu-id 0 --loss Relaxed_Contra --model bn_inception \
--embedding-size 64 --batch-size 90 --IPC 2 --dataset SOP --epochs 150 \
--source-ckpt ./pretrained_source/bn_inception/SOP_bn_inception_512dim_Proxy_Anchor_ckpt.pth \
--view 2 --sigma 1 --delta 1 --save 1
CUB-200-2011 Cars-196 SOP
Method Backbone [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected]
Source: PA BN512 69.1 78.9 86.1 86.4 91.9 95.0 79.2 90.7 96.2
FitNet BN64 62.3 73.8 83.0 81.2 87.7 92.5 76.6 89.3 95.4
Attention BN64 58.3 69.4 79.1 79.2 86.7 91.8 76.3 89.2 95.4
CRD BN64 60.9 72.7 81.7 79.2 87.2 92.1 75.5 88.3 95.3
DarkRank BN64 63.5 74.3 83.1 78.1 85.9 91.1 73.9 87.5 94.8
PKT BN64 63.6 75.8 84.0 82.2 88.7 93.5 74.6 87.3 94.2
RKD BN64 65.8 76.7 85.0 83.7 89.9 94.1 70.2 83.8 92.1
Ours BN64 67.4 78.0 85.9 86.5 92.3 95.3 76.3 88.6 94.8

Model Compression Setting

  • Transfer to a smaller network with a lower embedding dimension for usage in low-power and resource limited devices.
  • Source Embedding Network (ResNet50, 512 dim) 🠢 Target Embedding Network (ResNet18, 128 dim)

CUB-200-2011

python code/train_target.py --gpu-id 0 --loss Relaxed_Contra --model resnet18 \
--embedding-size 128 --batch-size 90 --IPC 2 --dataset cub --epochs 90 \
--source-ckpt ./pretrained_source/resnet50/cub_resnet50_512dim_Proxy_Anchor_ckpt.pth \
--view 2 --sigma 1 --delta 1 --save 1

Cars-196

python code/train_target.py --gpu-id 0 --loss Relaxed_Contra --model resnet18 \
--embedding-size 128 --batch-size 90 --IPC 2 --dataset cars --epochs 90 \
--source-ckpt ./pretrained_source/resnet50/cars_resnet50_512dim_Proxy_Anchor_ckpt.pth \
--view 2 --sigma 1 --delta 1 --save 1

SOP

python code/train_target.py --gpu-id 0 --loss Relaxed_Contra --model resnet18 \
--embedding-size 128 --batch-size 90 --IPC 2 --dataset SOP --epochs 150 \
--source-ckpt ./pretrained_source/resnet50/SOP_resnet50_512dim_Proxy_Anchor_ckpt.pth \
--view 2 --sigma 1 --delta 1 --save 1
CUB-200-2011 Cars-196 SOP
Method Backbone [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected]
Source: PA R50512 69.9 79.6 88.6 87.7 92.7 95.5 80.5 91.8 98.8
FitNet R18128 61.0 72.2 81.1 78.5 86.0 91.4 76.7 89.4 95.5
Attention R18128 61.0 71.7 81.5 78.6 85.9 91.0 76.4 89.3 95.5
CRD R18128 62.8 73.8 83.2 80.6 87.9 92.5 76.2 88.9 95.3
DarkRank R18128 61.2 72.5 82.0 75.3 83.6 89.4 72.7 86.7 94.5
PKT R18128 65.0 75.6 84.8 81.6 88.8 93.4 76.9 89.2 95.5
RKD R18128 65.8 76.3 84.8 84.2 90.4 94.3 75.7 88.4 95.1
Ours R18128 66.6 78.1 85.9 86.0 91.6 95.3 78.4 90.4 96.1

Train Source Embedding Network

This repository also provides code for training source embedding network with several losses as well as proxy-anchor loss. For details on how to train the source embedding network, please see the Proxy-Anchor Loss repository.

  • For example, training source embedding network (BN–Inception, 512 dim) with Proxy-Anchor Loss on the CUB-200-2011 as
python code/train_source.py --gpu-id 0 --loss Proxy_Anchor --model bn_inception \
--embedding-size 512 --batch-size 180 --lr 1e-4 --dataset cub \
--warm 1 --bn-freeze 1 --lr-decay-step 10 

Evaluating Image Retrieval

Follow the below steps to evaluate the trained model.
Trained best model will be saved in the ./logs/folder_name.

# The parameters should be changed according to the model to be evaluated.
python code/evaluate.py --gpu-id 0 \
                   --batch-size 120 \
                   --model bn_inception \
                   --embedding-size 512 \
                   --dataset cub \
                   --ckpt /set/your/model/path/best_model.pth

Acknowledgements

Our source code is modified and adapted on these great repositories:

Citation

If you use this method or this code in your research, please cite as:

@inproceedings{kim2021embedding,
  title={Embedding Transfer with Label Relaxation for Improved Metric Learning},
  author={Kim, Sungyeon and Kim, Dongwon and Cho, Minsu and Kwak, Suha},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2021}
}
Owner
Sungyeon Kim
Sungyeon Kim
Jupyter Dock is a set of Jupyter Notebooks for performing molecular docking protocols interactively, as well as visualizing, converting file formats and analyzing the results.

Molecular Docking integrated in Jupyter Notebooks Description | Citation | Installation | Examples | Limitations | License Table of content Descriptio

Angel J. Ruiz Moreno 173 Dec 25, 2022
VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations

VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations 3D-aware Image Synthesis via Learning Structural and Textura

GenForce: May Generative Force Be with You 116 Dec 26, 2022
EvoJAX is a scalable, general purpose, hardware-accelerated neuroevolution toolkit

EvoJAX: Hardware-Accelerated Neuroevolution EvoJAX is a scalable, general purpose, hardware-accelerated neuroevolution toolkit. Built on top of the JA

Google 598 Jan 07, 2023
Code of 3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swapping for Bodies and Faces

3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swapping for Bodies and Faces Installation After cloning the repo open

37 Dec 03, 2022
Code release for "Masked-attention Mask Transformer for Universal Image Segmentation"

Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Ro

Meta Research 1.2k Jan 02, 2023
StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators

StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators [Project Website] [Replicate.ai Project] StyleGAN-NADA: CLIP-Guided Domain Adaptation

992 Dec 30, 2022
PyTorch code for the "Deep Neural Networks with Box Convolutions" paper

Box Convolution Layer for ConvNets Single-box-conv network (from `examples/mnist.py`) learns patterns on MNIST What This Is This is a PyTorch implemen

Egor Burkov 515 Dec 18, 2022
Final project for Intro to CS class.

Financial Analysis Web App https://share.streamlit.io/mayurk1/fin-web-app-final-project/webApp.py 1. Project Description This project is a technical a

Mayur Khanna 1 Dec 10, 2021
A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run.

Minimal Hand A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run. This project provides the

Yuxiao Zhou 824 Jan 07, 2023
Implementation of trRosetta and trDesign for Pytorch, made into a convenient package

trRosetta - Pytorch (wip) Implementation of trRosetta and trDesign for Pytorch, made into a convenient package

Phil Wang 67 Dec 17, 2022
Clockwork Variational Autoencoder

Clockwork Variational Autoencoders (CW-VAE) Vaibhav Saxena, Jimmy Ba, Danijar Hafner If you find this code useful, please reference in your paper: @ar

Vaibhav Saxena 35 Nov 06, 2022
Simple tool to combine(merge) onnx models. Simple Network Combine Tool for ONNX.

snc4onnx Simple tool to combine(merge) onnx models. Simple Network Combine Tool for ONNX. https://github.com/PINTO0309/simple-onnx-processing-tools 1.

Katsuya Hyodo 8 Oct 13, 2022
Conceptual 12M is a dataset containing (image-URL, caption) pairs collected for vision-and-language pre-training.

Conceptual 12M We introduce the Conceptual 12M (CC12M), a dataset with ~12 million image-text pairs meant to be used for vision-and-language pre-train

Google Research Datasets 226 Dec 07, 2022
AI drive app that can help user become beautiful.

爱美丽 Beauty 简体中文 Features Beauty is an AI drive app that can help user become beautiful. it contain those functions: face score cheek face beauty repor

Starved Midnight 1 Jan 30, 2022
Tensorflow implementation of "Learning Deconvolution Network for Semantic Segmentation"

Tensorflow implementation of Learning Deconvolution Network for Semantic Segmentation. Install Instructions Works with tensorflow 1.11.0 and uses the

Fabian Bormann 224 Apr 15, 2022
Space-event-trace - Tracing service for spaceteam events

space-event-trace Tracing service for TU Wien Spaceteam events. This service is

TU Wien Space Team 2 Jan 04, 2022
Code examples and benchmarks from the paper "Understanding Entropy Coding With Asymmetric Numeral Systems (ANS): a Statistician's Perspective"

Code For the Paper "Understanding Entropy Coding With Asymmetric Numeral Systems (ANS): a Statistician's Perspective" Author: Robert Bamler Date: 22 D

4 Nov 02, 2022
Machine Learning Toolkit for Kubernetes

Kubeflow the cloud-native platform for machine learning operations - pipelines, training and deployment. Documentation Please refer to the official do

Kubeflow 12.1k Jan 03, 2023
Implementation of ResMLP, an all MLP solution to image classification, in Pytorch

ResMLP - Pytorch Implementation of ResMLP, an all MLP solution to image classification out of Facebook AI, in Pytorch Install $ pip install res-mlp-py

Phil Wang 178 Dec 02, 2022
codes for Self-paced Deep Regression Forests with Consideration on Ranking Fairness

Self-paced Deep Regression Forests with Consideration on Ranking Fairness This is official codes for paper Self-paced Deep Regression Forests with Con

Learning in Vision 4 Sep 11, 2022