Code for "The Intrinsic Dimension of Images and Its Impact on Learning" - ICLR 2021 Spotlight

Overview

dimensions

Estimating the instrinsic dimensionality of image datasets

Code for: The Intrinsic Dimensionaity of Images and Its Impact On Learning - Phillip Pope and Chen Zhu, Ahmed Abdelkader, Micah Goldblum, Tom Goldstein (ICLR 2021, spotlight)

Basenjis of Varying dimensionality

Environment

This code was developed in the following environment

conda create dimensions python=3.6 jupyter matplotlib scikit-learn pytorch==1.5.0 torchvision cudatoolkit=10.2 -c pytorch

To generate new data of controlled dimensionality with GANs, you must install:

pip install pytorch-pretrained-biggan

To use the shortest-path method (Granata and Carnevale 2016) you must also compile the fast graph shortest path code gsp (written by Jake VdP + Sci-Kit Learn)

cd estimators/gsp
python setup.py install

Generate data of controlled dimensionality

python generate_data/gen_images.py \
  --num_samples 1000 \
  --class_name basenji \
  --latent_dim 16 \
  --batch_size 100 \
  --save_dir samples/basenji_16

Estimate dimension of generated samples

To run the MLE (Levina and Bickel) estimator on the synthetic GAN data generated above:

python main.py \
    --estimator mle \
    --k1 25 \
    --single-k \
    --eval-every-k \
    --average-inverse \
    --dset  samples/basenji_16 \
    --max_num_samples 1000 \
    --save-path results/basenji_16.json

Use --estimators to try different estimators

Citation

If you find our paper or code useful, please cite our paper:

@inproceedings{DBLP:conf/iclr/PopeZAGG21,
  author    = {Phillip Pope and
               Chen Zhu and
               Ahmed Abdelkader and
               Micah Goldblum and
               Tom Goldstein},
  title     = {The Intrinsic Dimension of Images and Its Impact on Learning},
  booktitle = {9th International Conference on Learning Representations, {ICLR} 2021,
               Virtual Event, Austria, May 3-7, 2021},
  publisher = {OpenReview.net},
  year      = {2021},
  url       = {https://openreview.net/forum?id=XJk19XzGq2J},
  timestamp = {Wed, 23 Jun 2021 17:36:39 +0200},
  biburl    = {https://dblp.org/rec/conf/iclr/PopeZAGG21.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

Acknowledgements

We gratefully acknowledge use of the following codebases when developing our dimensionality estimators:

We also thank Prof. Vishnu Boddeti for clarifying comments on the graph-distance estimator.

Disclaimer

This code released as is. We will do our best to address questions/bugs, but cannot guarantee support.

Owner
Phil Pope
CS PhD Student @ University of Maryland, College Park. Machine learning. Previously @ HRL, Clarifai, New College of Florida
Phil Pope
This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices.

GBW This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices. Ap

Andi Han 0 Oct 22, 2021
A lightweight deep network for fast and accurate optical flow estimation.

FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation The official PyTorch implementation of FastFlowNet (ICRA 2021). Authors: Lingtong

Tone 161 Jan 03, 2023
Official pytorch implementation of the IrwGAN for unaligned image-to-image translation

IrwGAN (ICCV2021) Unaligned Image-to-Image Translation by Learning to Reweight [Update] 12/15/2021 All dataset are released, trained models and genera

37 Nov 09, 2022
Official repo for our 3DV 2021 paper "Monocular 3D Reconstruction of Interacting Hands via Collision-Aware Factorized Refinements".

Monocular 3D Reconstruction of Interacting Hands via Collision-Aware Factorized Refinements Yu Rong, Jingbo Wang, Ziwei Liu, Chen Change Loy Paper. Pr

Yu Rong 41 Dec 13, 2022
Code for the paper "Regularizing Variational Autoencoder with Diversity and Uncertainty Awareness"

DU-VAE This is the pytorch implementation of the paper "Regularizing Variational Autoencoder with Diversity and Uncertainty Awareness" Acknowledgement

Dazhong Shen 4 Oct 19, 2022
Simple codebase for flexible neural net training

neural-modular Simple codebase for flexible neural net training. Allows for seamless exchange of models, dataset, and optimizers. Uses hydra for confi

Jannik Kossen 7 Apr 05, 2022
optimization routines for hyperparameter tuning

Hyperopt: Distributed Hyperparameter Optimization Hyperopt is a Python library for serial and parallel optimization over awkward search spaces, which

Marc Claesen 398 Nov 09, 2022
Source code for Fixed-Point GAN for Cloud Detection

FCD: Fixed-Point GAN for Cloud Detection PyTorch source code of Nyborg & Assent (2020). Abstract The detection of clouds in satellite images is an ess

Joachim Nyborg 8 Dec 22, 2022
CLASP - Contrastive Language-Aminoacid Sequence Pretraining

CLASP - Contrastive Language-Aminoacid Sequence Pretraining Repository for creating models pretrained on language and aminoacid sequences similar to C

Michael Pieler 133 Dec 29, 2022
Codes for TS-CAM: Token Semantic Coupled Attention Map for Weakly Supervised Object Localization.

TS-CAM: Token Semantic Coupled Attention Map for Weakly SupervisedObject Localization This is the official implementaion of paper TS-CAM: Token Semant

vasgaowei 112 Jan 02, 2023
A basic neural network for image segmentation.

Unet_erythema_detection A basic neural network for image segmentation. 前期准备 1.在logs文件夹中下载h5权重文件,百度网盘链接在logs文件夹中 2.将所有原图 放置在“/dataset_1/JPEGImages/”文件夹

1 Jan 16, 2022
[NeurIPS-2020] Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID.

Self-paced Contrastive Learning (SpCL) The official repository for Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID

Yixiao Ge 286 Dec 21, 2022
Allows including an action inside another action (by preprocessing the Yaml file). This is how composite actions should have worked.

actions-includes Allows including an action inside another action (by preprocessing the Yaml file). Instead of using uses or run in your action step,

Tim Ansell 70 Nov 04, 2022
Neural Motion Learner With Python

Neural Motion Learner Introduction This work is to extract skeletal structure from volumetric observations and to learn motion dynamics from the detec

Jinseok Bae 14 Nov 28, 2022
Official public repository of paper "Intention Adaptive Graph Neural Network for Category-Aware Session-Based Recommendation"

Intention Adaptive Graph Neural Network (IAGNN) This is the official repository of paper Intention Adaptive Graph Neural Network for Category-Aware Se

9 Nov 22, 2022
The implementation for the SportsCap (IJCV 2021)

SportsCap: Monocular 3D Human Motion Capture and Fine-grained Understanding in Challenging Sports Videos ProjectPage | Paper | Video | Dataset (Part01

Chen Xin 79 Dec 16, 2022
Think Big, Teach Small: Do Language Models Distil Occam’s Razor?

Think Big, Teach Small: Do Language Models Distil Occam’s Razor? Software related to the paper "Think Big, Teach Small: Do Language Models Distil Occa

0 Dec 07, 2021
SegNet-like Autoencoders in TensorFlow

SegNet SegNet is a TensorFlow implementation of the segmentation network proposed by Kendall et al., with cool features like strided deconvolution, a

Andrea Azzini 66 Nov 05, 2021
Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo"

dblmahmc Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo" Requirements: https://github.com

1 Dec 17, 2021
Pytorch implementation of COIN, a framework for compression with implicit neural representations 🌸

COIN 🌟 This repo contains a Pytorch implementation of COIN: COmpression with Implicit Neural representations, including code to reproduce all experim

Emilien Dupont 104 Dec 14, 2022