Generate images from texts. In Russian

Overview

ruDALL-E

Generate images from texts

Apache license Downloads Coverage Status pipeline pre-commit.ci status

pip install rudalle==1.1.0rc0

🤗 HF Models:

ruDALL-E Malevich (XL)
ruDALL-E Emojich (XL) (readme here)
ruDALL-E Surrealist (XL)

Minimal Example:

Open In Colab Kaggle Hugging Face Spaces

Example usage ruDALL-E Malevich (XL) with 3.5GB vRAM! Open In Colab

Finetuning example Open In Colab

generation by ruDALLE:

import ruclip
from rudalle.pipelines import generate_images, show, super_resolution, cherry_pick_by_ruclip
from rudalle import get_rudalle_model, get_tokenizer, get_vae, get_realesrgan
from rudalle.utils import seed_everything

# prepare models:
device = 'cuda'
dalle = get_rudalle_model('Malevich', pretrained=True, fp16=True, device=device)
tokenizer = get_tokenizer()
vae = get_vae(dwt=True).to(device)

# pipeline utils:
realesrgan = get_realesrgan('x2', device=device)
clip, processor = ruclip.load('ruclip-vit-base-patch32-384', device=device)
clip_predictor = ruclip.Predictor(clip, processor, device, bs=8)
text = 'радуга на фоне ночного города'

seed_everything(42)
pil_images = []
scores = []
for top_k, top_p, images_num in [
    (2048, 0.995, 24),
]:
    _pil_images, _scores = generate_images(text, tokenizer, dalle, vae, top_k=top_k, images_num=images_num, bs=8, top_p=top_p)
    pil_images += _pil_images
    scores += _scores

show(pil_images, 6)

auto cherry-pick by ruCLIP:

top_images, clip_scores = cherry_pick_by_ruclip(pil_images, text, clip_predictor, count=6)
show(top_images, 3)

super resolution:

sr_images = super_resolution(top_images, realesrgan)
show(sr_images, 3)

text, seed = 'красивая тян из аниме', 6955

Image Prompt

see jupyters/ruDALLE-image-prompts-A100.ipynb

text, seed = 'Храм Василия Блаженного', 42
skyes = [red_sky, sunny_sky, cloudy_sky, night_sky]

Aspect ratio images -->NEW<--

🚀 Contributors 🚀

Supported by

Social Media

Comments
  • Smaller / Distilled model?

    Smaller / Distilled model?

    Will there be a smaller or a distilled model release? The problem with inferencing in google colab is the speeds. 4:32 for one image on a P100, and 2 hours+ for 3 images on K80.

    opened by johnpaulbin 10
  • RuntimeError: cuDNN error: CUDNN_STATUS_INTERNAL_ERROR

    RuntimeError: cuDNN error: CUDNN_STATUS_INTERNAL_ERROR

    i use default code and get error after generation 100% please help i use windows and conda

    `◼️ Malevich is 1.3 billion params model from the family GPT3-like, that uses Russian language and text+image multi-modality. x4 --> ready tokenizer --> ready Working with z of shape (1, 256, 32, 32) = 262144 dimensions. vae --> ready ruclip --> ready 100%|██████████████████████████████████████████████████████████████████████████████| 1024/1024 [00:46<00:00, 22.14it/s] Traceback (most recent call last): File "gen.py", line 29, in _pil_images, _scores = generate_images(text, tokenizer, dalle, vae, top_k=top_k, images_num=images_num, top_p=top_p) File "C:\Users\1\anaconda3\lib\site-packages\rudalle\pipelines.py", line 60, in generate_images images = vae.decode(codebooks) File "C:\Users\1\anaconda3\lib\site-packages\rudalle\vae\model.py", line 38, in decode img = self.model.decode(z) File "C:\Users\1\anaconda3\lib\site-packages\rudalle\vae\model.py", line 98, in decode quant = self.post_quant_conv(quant) File "C:\Users\1\anaconda3\lib\site-packages\torch\nn\modules\module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "C:\Users\1\anaconda3\lib\site-packages\torch\nn\modules\conv.py", line 399, in forward return self._conv_forward(input, self.weight, self.bias) File "C:\Users\1\anaconda3\lib\site-packages\torch\nn\modules\conv.py", line 395, in _conv_forward return F.conv2d(input, weight, bias, self.stride, RuntimeError: cuDNN error: CUDNN_STATUS_INTERNAL_ERROR You can try to repro this exception using the following code snippet. If that doesn't trigger the error, please include your original repro script when reporting this issue.

    import torch torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.benchmark = True torch.backends.cudnn.deterministic = True torch.backends.cudnn.allow_tf32 = True data = torch.randn([3, 256, 32, 32], dtype=torch.float, device='cuda', requires_grad=True).to(memory_format=torch.channels_last) net = torch.nn.Conv2d(256, 256, kernel_size=[1, 1], padding=[0, 0], stride=[1, 1], dilation=[1, 1], groups=1) net = net.cuda().float().to(memory_format=torch.channels_last) out = net(data) out.backward(torch.randn_like(out)) torch.cuda.synchronize()

    ConvolutionParams data_type = CUDNN_DATA_FLOAT padding = [0, 0, 0] stride = [1, 1, 0] dilation = [1, 1, 0] groups = 1 deterministic = true allow_tf32 = true input: TensorDescriptor 0000020481F094B0 type = CUDNN_DATA_FLOAT nbDims = 4 dimA = 3, 256, 32, 32, strideA = 262144, 1, 8192, 256, output: TensorDescriptor 0000020481F09590 type = CUDNN_DATA_FLOAT nbDims = 4 dimA = 3, 256, 32, 32, strideA = 262144, 1, 8192, 256, weight: FilterDescriptor 000001FFD2E76AF0 type = CUDNN_DATA_FLOAT tensor_format = CUDNN_TENSOR_NHWC nbDims = 4 dimA = 256, 256, 1, 1, Pointer addresses: input: 0000001538C7D000 output: 000000153B87D000 weight: 00000014D3BB0000 `

    opened by bitcoin5000 7
  • Auto cut pictures into separated images

    Auto cut pictures into separated images

    Есть ли какие-нибудь параметры, которые автоматически нарежут и сохранят сгенерированные картинки по отдельности?


    Are there any args that will automatically cut and save separated images?

    opened by Sidiusz 4
  • Gradient checkpointing

    Gradient checkpointing

    This patch enables gradient checkpointing for ruDALLE.

    It's possible to use up to 3x higher batch sizes in memory-limited environments during training.

    Setting the gradient_checkpointing during model.forward makes a checkpoint every gradient_checkpointing layers. 6 is a good starting value.

    opened by neverix 3
  • Feature/dwt vae

    Feature/dwt vae

    add support decoding vae with DWT (discrete wavelet transform):

    allow restore 512x512 images

    thanks a lot @bes for issue https://github.com/sberbank-ai/ru-dalle/issues/42 with this idea 👍

    vae = get_vae(dwt=True)
    
    opened by shonenkov 3
  • optimize image prompts

    optimize image prompts

    This enables caching for image prompts. For some reason, the results change slightly. I tried looking for off-by-one bugs in this, but couldn't find one myself.

    opened by neverix 3
  • The error in ruDall-e code that published in Kaggle

    The error in ruDall-e code that published in Kaggle

    Execution of ruDall-e code in the Kaggle notebook (as is published), in GPU session ends with error:

    ModuleNotFoundError                       Traceback (most recent call last)
    /tmp/ipykernel_29/1914141142.py in <module>
    ----> 1 from rudalle.pipelines import generate_images, show, super_resolution, cherry_pick_by_clip
          2 from rudalle import get_rudalle_model, get_tokenizer, get_vae, get_realesrgan, get_ruclip
          3 from rudalle.utils import seed_everything
    
    ModuleNotFoundError: No module named 'rudalle'
    
    

    The error message refers to this code:

    !pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html > /dev/null
    !pip install rudalle==0.0.1rc1 > /dev/null
    
    opened by XieBaoshi 3
  • Constantly having to redownload models

    Constantly having to redownload models

    Hi, I've noticed that running it on a local jupyter instance will always redownload the model again. Is there a way I can avoid this as I don't want to be waiting for it to finish everytime. Thanks/

    opened by JohnnyRacer 2
  • Problem about the PyTorch vision?

    Problem about the PyTorch vision?

    I have look for the issues but I can't find the same problem. So sorry to bother you. GPU: 截屏2021-12-02 下午6 35 14 my python environment: pytorch=1.8.0&torchvision=0.9.0, cudatoolkit=11.3.1&cudnn =8.2.1. I have tried the rudalle=0.3.0 just following the readme.md, or 0.0.1rc5 by the RTX3090.ipynb, but I only got the following error! 截屏2021-12-02 下午6 38 49

    So I wanna know if any problem in my environment? Waiting for your reply!

    opened by Wang-Xiaodong1899 2
  • image_prompts.py – borders crop not working properly

    image_prompts.py – borders crop not working properly

    From an official documentation:

    borders (dict[str] | int): borders that we croped from pil_image example: {'up': 4, 'right': 0, 'left': 0, 'down': 0} (1 int eq 8 pixels)

    Up crop works just fine. But if I will pass as a crop argument something other than "Up" in the result, I will get an AssertionError: telegram-cloud-photo-size-2-5197407051389712641-y

    Thank you for a fantastic algo ✨

    opened by DenisSergeevitch 2
  • Не запускается generate_images

    Не запускается generate_images

    Пытаюсь запустить на device = 'cpu'. Пример из README самый первый

    Падает с таким трейсбеком. Что я делаю не так?

    ◼️ Malevich is 1.3 billion params model from the family GPT3-like, that uses Russian language and text+image multi-modality.
    x4 --> ready
    tokenizer --> ready
    Working with z of shape (1, 256, 32, 32) = 262144 dimensions.
    vae --> ready
    ruclip --> ready
      0%|          | 0/1024 [00:00<?, ?it/s]
    Traceback (most recent call last):
      File "%projectfolder%\test\venv\lib\site-packages\rudalle\pipelines.py", line 46, in generate_images
        logits, has_cache = dalle(out, attention_mask,
      File "%projectfolder%\test\venv\lib\site-packages\torch\nn\modules\module.py", line 1051, in _call_impl
        return forward_call(*input, **kwargs)
      File "%projectfolder%\test\venv\lib\site-packages\rudalle\dalle\fp16.py", line 51, in forward
        return fp16_to_fp32(self.module(*(fp32_to_fp16(inputs)), **kwargs))
      File "%projectfolder%\test\venv\lib\site-packages\torch\nn\modules\module.py", line 1051, in _call_impl
        return forward_call(*input, **kwargs)
      File "%projectfolder%\test\venv\lib\site-packages\rudalle\dalle\model.py", line 150, in forward
        transformer_output, present_has_cache = self.transformer(
      File "%projectfolder%\test\venv\lib\site-packages\torch\nn\modules\module.py", line 1051, in _call_impl
        return forward_call(*input, **kwargs)
      File "%projectfolder%\test\venv\lib\site-packages\rudalle\dalle\transformer.py", line 76, in forward
        hidden_states, present_has_cache = layer(hidden_states, mask, has_cache=has_cache, use_cache=use_cache)
      File "%projectfolder%\test\venv\lib\site-packages\torch\nn\modules\module.py", line 1051, in _call_impl
        return forward_call(*input, **kwargs)
      File "%projectfolder%\test\venv\lib\site-packages\rudalle\dalle\transformer.py", line 146, in forward
        layernorm_output = self.input_layernorm(hidden_states)
      File "%projectfolder%\test\venv\lib\site-packages\torch\nn\modules\module.py", line 1051, in _call_impl
        return forward_call(*input, **kwargs)
      File "%projectfolder%\test\venv\lib\site-packages\torch\nn\modules\normalization.py", line 173, in forward
        return F.layer_norm(
      File "%projectfolder%\test\venv\lib\site-packages\torch\nn\functional.py", line 2346, in layer_norm
        return torch.layer_norm(input, normalized_shape, weight, bias, eps, torch.backends.cudnn.enabled)
    RuntimeError: "LayerNormKernelImpl" not implemented for 'Half'
    
    opened by Xoma163 2
  • Add optional resume_download argument to help download large models

    Add optional resume_download argument to help download large models

    It's kinda pain to download large models with unstable network connection. For instance, i've started seeing this type of error (see screenshot). It breaks download process and you have to start again from zero bytes downloaded.

    However, cached_download(..) function in huggingface_hub has resume_download argument that can be used to restart download without loosing progress. See this line. So i think it would be helpful to add it as optional argument(defaults to False) to the get_rudalle_model(..) so users can turn it on if they have unstable internet.

    opened by Rexhaif 0
  • kandinsky model not available

    kandinsky model not available

    Nice to see the update! There is an auth error with the kandinsky model. Not sure if this is intended as there seem to be some token requirement. Could you clarify?

    opened by xavierleung 0
  • RuntimeError: nvrtc: error: failed to open libnvrtc-builtins.so.11.1.

    RuntimeError: nvrtc: error: failed to open libnvrtc-builtins.so.11.1.

    What might be causing this ?

    RuntimeError: nvrtc: error: failed to open libnvrtc-builtins.so.11.1. Make sure that libnvrtc-builtins.so.11.1 is installed correctly. nvrtc compilation failed:

    #define NAN __int_as_float(0x7fffffff)
    #define POS_INFINITY __int_as_float(0x7f800000)
    #define NEG_INFINITY __int_as_float(0xff800000)
    
    
    template<typename T>
    __device__ T maximum(T a, T b) {
      return isnan(a) ? a : (a > b ? a : b);
    }
    
    template<typename T>
    __device__ T minimum(T a, T b) {
      return isnan(a) ? a : (a < b ? a : b);
    }
    
    
    #define __HALF_TO_US(var) *(reinterpret_cast<unsigned short *>(&(var)))
    #define __HALF_TO_CUS(var) *(reinterpret_cast<const unsigned short *>(&(var)))
    #if defined(__cplusplus)
      struct __align__(2) __half {
        __host__ __device__ __half() { }
    
      protected:
        unsigned short __x;
      };
    
      /* All intrinsic functions are only available to nvcc compilers */
      #if defined(__CUDACC__)
        /* Definitions of intrinsics */
        __device__ __half __float2half(const float f) {
          __half val;
          asm("{  cvt.rn.f16.f32 %0, %1;}\n" : "=h"(__HALF_TO_US(val)) : "f"(f));
          return val;
        }
    
        __device__ float __half2float(const __half h) {
          float val;
          asm("{  cvt.f32.f16 %0, %1;}\n" : "=f"(val) : "h"(__HALF_TO_CUS(h)));
          return val;
        }
    
      #endif /* defined(__CUDACC__) */
    #endif /* defined(__cplusplus) */
    #undef __HALF_TO_US
    #undef __HALF_TO_CUS
    
    typedef __half half;
    
    extern "C" __global__
    void fused_mul_mul_mul_mu_5065363705190979294(half* t0, half* aten_mul) {
    {
      float t0_1 = __half2float(t0[(8192 * (((512 * blockIdx.x + threadIdx.x) / 8192) % 128) + ((512 * blockIdx.x + threadIdx.x) / 1048576) * 1048576) + (512 * blockIdx.x + threadIdx.x) % 8192]);
      aten_mul[(8192 * (((512 * blockIdx.x + threadIdx.x) / 8192) % 128) + ((512 * blockIdx.x + threadIdx.x) / 1048576) * 1048576) + (512 * blockIdx.x + threadIdx.x) % 8192] = __float2half((t0_1 * 0.5f) * ((tanhf((t0_1 * 0.7978845834732056f) * ((t0_1 * 0.04471499845385551f) * t0_1 + 1.f))) + 1.f));
    }
    }
    
    opened by c0ffymachyne 1
  • Bad syntax in collab

    Bad syntax in collab

    In https://colab.research.google.com/drive/1wGE-046et27oHvNlBNPH07qrEQNE04PQ?usp=sharing#scrollTo=GdOYJvwZSB-D

    it should be a couple of quotes (") in the text parameter:

    text = Что бы ни # @param

    Should be:

    text = "Что бы ни" # @param

    Thanks!

    opened by Jakeukalane 1
Releases(v1.1.0)
Owner
AI Forever
Creating ML for the future. AI projects you already know. We are non-profit organization with members from all over the world.
AI Forever
DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference

DeeBERT This is the code base for the paper DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference. Code in this repository is also available

Castorini 132 Nov 14, 2022
Keras + Hyperopt: A very simple wrapper for convenient hyperparameter optimization

This project is now archived. It's been fun working on it, but it's time for me to move on. Thank you for all the support and feedback over the last c

Max Pumperla 2.1k Jan 03, 2023
An example project demonstrating how the Autonomous Learning Library can be used to build new reinforcement learning agents.

About This repository shows how Autonomous Learning Library can be used to build new reinforcement learning agents. In particular, it contains a model

Chris Nota 5 Aug 30, 2022
Boost learning for GNNs from the graph structure under challenging heterophily settings. (NeurIPS'20)

Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu,

GEMS Lab: Graph Exploration & Mining at Scale, University of Michigan 70 Dec 18, 2022
Code for 'Self-Guided and Cross-Guided Learning for Few-shot segmentation. (CVPR' 2021)'

SCL Introduction Code for 'Self-Guided and Cross-Guided Learning for Few-shot segmentation. (CVPR' 2021)' We evaluated our approach using two baseline

34 Oct 08, 2022
deep learning for image processing including classification and object-detection etc.

深度学习在图像处理中的应用教程 前言 本教程是对本人研究生期间的研究内容进行整理总结,总结的同时也希望能够帮助更多的小伙伴。后期如果有学习到新的知识也会与大家一起分享。 本教程会以视频的方式进行分享,教学流程如下: 1)介绍网络的结构与创新点 2)使用Pytorch进行网络的搭建与训练 3)使用Te

WuZhe 13.6k Jan 04, 2023
2D Time independent Schrodinger equation solver for arbitrary shape of well

Schrodinger Well Python Python solver for timeless Schrodinger equation for well with arbitrary shape https://imgur.com/a/jlhK7OZ Pictures of circular

WeightAn 24 Nov 18, 2022
The MLOps platform for innovators 🚀

​ DS2.ai is an integrated AI operation solution that supports all stages from custom AI development to deployment. It is an AI-specialized platform service that collects data, builds a training datas

9 Jan 03, 2023
Easy genetic ancestry predictions in Python

ezancestry Easily visualize your direct-to-consumer genetics next to 2500+ samples from the 1000 genomes project. Evaluate the performance of a custom

Kevin Arvai 38 Jan 02, 2023
Indonesian Car License Plate Character Recognition using Tensorflow, Keras and OpenCV.

Monopol Indonesian Car License Plate (Indonesia Mobil Nomor Polisi) Character Recognition using Tensorflow, Keras and OpenCV. Background This applicat

Jayaku Briliantio 3 Apr 07, 2022
🕺Full body detection and tracking

Pose-Detection 🤔 Overview Human pose estimation from video plays a critical role in various applications such as quantifying physical exercises, sign

Abbas Ataei 20 Nov 21, 2022
A Vision Transformer approach that uses concatenated query and reference images to learn the relationship between query and reference images directly.

A Vision Transformer approach that uses concatenated query and reference images to learn the relationship between query and reference images directly.

24 Dec 13, 2022
Spatial Contrastive Learning for Few-Shot Classification (SCL)

This repo contains the official implementation of Spatial Contrastive Learning for Few-Shot Classification (SCL), which presents of a novel contrastive learning method applied to few-shot image class

Yassine 34 Dec 25, 2022
Code-free deep segmentation for computational pathology

NoCodeSeg: Deep segmentation made easy! This is the official repository for the manuscript "Code-free development and deployment of deep segmentation

André Pedersen 26 Nov 23, 2022
Federated learning on graph, especially on graph neural networks (GNNs), knowledge graph, and private GNN.

Federated learning on graph, especially on graph neural networks (GNNs), knowledge graph, and private GNN.

keven 198 Dec 20, 2022
Unofficial PyTorch Implementation of "Augmenting Convolutional networks with attention-based aggregation"

Pytorch Implementation of Augmenting Convolutional networks with attention-based aggregation This is the unofficial PyTorch Implementation of "Augment

DK 20 Sep 09, 2022
This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models are Pix2Pix, Pix2PixHD, CycleGAN and PointWise.

RGB2NIR_Experimental This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models

5 Jan 04, 2023
DCGAN LSGAN WGAN-GP DRAGAN PyTorch

Recommendation Our GAN based work for facial attribute editing - AttGAN. News 8 April 2019: We re-implement these GANs by Tensorflow 2! The old versio

Zhenliang He 408 Nov 30, 2022
An implementation of "Learning human behaviors from motion capture by adversarial imitation"

Merel-MoCap-GAIL An implementation of Merel et al.'s paper on generative adversarial imitation learning (GAIL) using motion capture (MoCap) data: Lear

Yu-Wei Chao 34 Nov 12, 2022
Code, Data and Demo for Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting

InversePrompting Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting Code: The code is provided in the "chinese_ip"

THUDM 101 Dec 16, 2022