Keras + Hyperopt: A very simple wrapper for convenient hyperparameter optimization

Overview

This project is now archived. It's been fun working on it, but it's time for me to move on. Thank you for all the support and feedback over the last couple of years. If someone is interested in taking ownership, let's discuss. ✌️

Hyperas Build Status PyPI version

A very simple convenience wrapper around hyperopt for fast prototyping with keras models. Hyperas lets you use the power of hyperopt without having to learn the syntax of it. Instead, just define your keras model as you are used to, but use a simple template notation to define hyper-parameter ranges to tune.

Installation

pip install hyperas

Quick start

Assume you have data generated as such

def data():
    x_train = np.zeros(100)
    x_test = np.zeros(100)
    y_train = np.zeros(100)
    y_test = np.zeros(100)
    return x_train, y_train, x_test, y_test

and an existing keras model like the following

def create_model(x_train, y_train, x_test, y_test):
    model = Sequential()
    model.add(Dense(512, input_shape=(784,)))
    model.add(Activation('relu'))
    model.add(Dropout(0.2))
    model.add(Dense(512))
    model.add(Activation('relu'))
    model.add(Dropout(0.2))
    model.add(Dense(10))
    model.add(Activation('softmax'))

    # ... model fitting

    return model

To do hyper-parameter optimization on this model, just wrap the parameters you want to optimize into double curly brackets and choose a distribution over which to run the algorithm.

In the above example, let's say we want to optimize for the best dropout probability in both dropout layers. Choosing a uniform distribution over the interval [0,1], this translates into the following definition. Note that before returning the model, to optimize, we also have to define which evaluation metric of the model is important to us. For example, in the following, we optimize for accuracy.

Note: In the following code we use 'loss': -accuracy, i.e. the negative of accuracy. That's because under the hood hyperopt will always minimize whatever metric you provide. If instead you want to actually want to minimize a metric, say MSE or another loss function, you keep a positive sign (e.g. 'loss': mse).

from hyperas.distributions import uniform

def create_model(x_train, y_train, x_test, y_test):
    model = Sequential()
    model.add(Dense(512, input_shape=(784,)))
    model.add(Activation('relu'))
    model.add(Dropout({{uniform(0, 1)}}))
    model.add(Dense(512))
    model.add(Activation('relu'))
    model.add(Dropout({{uniform(0, 1)}}))
    model.add(Dense(10))
    model.add(Activation('softmax'))

    # ... model fitting

    score = model.evaluate(x_test, y_test, verbose=0)
    accuracy = score[1]
    return {'loss': -accuracy, 'status': STATUS_OK, 'model': model}

The last step is to actually run the optimization, which is done as follows:

best_run = optim.minimize(model=create_model,
                          data=data,
                          algo=tpe.suggest,
                          max_evals=10,
                          trials=Trials())

In this example we use at most 10 evaluation runs and the TPE algorithm from hyperopt for optimization.

Check the "complete example" below for more details.

Complete example

Note: It is important to wrap your data and model into functions as shown below, and then pass them as parameters to the minimizer. data() returns the data the create_model() needs. An extended version of the above example in one script reads as follows. This example shows many potential use cases of hyperas, including:

  • Varying dropout probabilities, sampling from a uniform distribution
  • Different layer output sizes
  • Different optimization algorithms to use
  • Varying choices of activation functions
  • Conditionally adding layers depending on a choice
  • Swapping whole sets of layers
from __future__ import print_function
import numpy as np

from hyperopt import Trials, STATUS_OK, tpe
from keras.datasets import mnist
from keras.layers.core import Dense, Dropout, Activation
from keras.models import Sequential
from keras.utils import np_utils

from hyperas import optim
from hyperas.distributions import choice, uniform


def data():
    """
    Data providing function:

    This function is separated from create_model() so that hyperopt
    won't reload data for each evaluation run.
    """
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    x_train = x_train.reshape(60000, 784)
    x_test = x_test.reshape(10000, 784)
    x_train = x_train.astype('float32')
    x_test = x_test.astype('float32')
    x_train /= 255
    x_test /= 255
    nb_classes = 10
    y_train = np_utils.to_categorical(y_train, nb_classes)
    y_test = np_utils.to_categorical(y_test, nb_classes)
    return x_train, y_train, x_test, y_test


def create_model(x_train, y_train, x_test, y_test):
    """
    Model providing function:

    Create Keras model with double curly brackets dropped-in as needed.
    Return value has to be a valid python dictionary with two customary keys:
        - loss: Specify a numeric evaluation metric to be minimized
        - status: Just use STATUS_OK and see hyperopt documentation if not feasible
    The last one is optional, though recommended, namely:
        - model: specify the model just created so that we can later use it again.
    """
    model = Sequential()
    model.add(Dense(512, input_shape=(784,)))
    model.add(Activation('relu'))
    model.add(Dropout({{uniform(0, 1)}}))
    model.add(Dense({{choice([256, 512, 1024])}}))
    model.add(Activation({{choice(['relu', 'sigmoid'])}}))
    model.add(Dropout({{uniform(0, 1)}}))

    # If we choose 'four', add an additional fourth layer
    if {{choice(['three', 'four'])}} == 'four':
        model.add(Dense(100))

        # We can also choose between complete sets of layers

        model.add({{choice([Dropout(0.5), Activation('linear')])}})
        model.add(Activation('relu'))

    model.add(Dense(10))
    model.add(Activation('softmax'))

    model.compile(loss='categorical_crossentropy', metrics=['accuracy'],
                  optimizer={{choice(['rmsprop', 'adam', 'sgd'])}})

    result = model.fit(x_train, y_train,
              batch_size={{choice([64, 128])}},
              epochs=2,
              verbose=2,
              validation_split=0.1)
    #get the highest validation accuracy of the training epochs
    validation_acc = np.amax(result.history['val_acc']) 
    print('Best validation acc of epoch:', validation_acc)
    return {'loss': -validation_acc, 'status': STATUS_OK, 'model': model}


if __name__ == '__main__':
    best_run, best_model = optim.minimize(model=create_model,
                                          data=data,
                                          algo=tpe.suggest,
                                          max_evals=5,
                                          trials=Trials())
    X_train, Y_train, X_test, Y_test = data()
    print("Evalutation of best performing model:")
    print(best_model.evaluate(X_test, Y_test))
    print("Best performing model chosen hyper-parameters:")
    print(best_run)

FAQ

Here is a list of a few popular errors

TypeError: require string label

You're probably trying to execute the model creation code, with the templates, directly in python. That fails simply because python cannot run the templating in the braces, e.g. {{uniform..}}. The def create_model(...) function is in fact not a valid python function anymore.

You need to wrap your code in a def create_model(...): ... function, and then call it from optim.minimize(model=create_model,... like in the example.

The reason for this is that hyperas works by doing template replacement of everything in the {{...}} into a separate temporary file, and then running the model with the replaced braces (think jinja templating).

This is the basis of how hyperas simplifies usage of hyperopt by being a "very simple wrapper".

TypeError: 'generator' object is not subscriptable

This is currently a known issue.

Just pip install networkx==1.11

NameError: global name 'X_train' is not defined

Maybe you forgot to return the x_train argument in the def create_model(x_train...) call from the def data(): ... function.

You are not restricted to the same list of arguments as in the example. Any arguments you return from data() will be passed to create_model()

notebook adjustment

If you find error like "No such file or directory" or OSError, Err22, you may need add notebook_name='simple_notebook'(assume your current notebook name is simple_notebook) in optim.minimize function like this:

best_run, best_model = optim.minimize(model=model,
                                      data=data,
                                      algo=tpe.suggest,
                                      max_evals=5,
                                      trials=Trials(),
                                      notebook_name='simple_notebook')

How does hyperas work?

All we do is parse the data and model templates and translate them into proper hyperopt by reconstructing the space object that's then passed to fmin. Most of the relevant code is found in optim.py and utils.py.

How to read the output of a hyperas model?

Hyperas translates your script into hyperopt compliant code, see here for some guidance on how to interpret the result.

How to pass arguments to data?

Suppose you want your data function take an argument, specify it like this using positional arguments only (not keyword arguments):

import pickle
def data(fname):
    with open(fname,'rb') as fh:
        return pickle.load(fh)

Note that your arguments must be implemented such that repr can show them in their entirety (such as strings and numbers). If you want more complex objects, use the passed arguments to build them inside the data function.

And when you run your trials, pass a tuple of arguments to be substituted in as data_args:

best_run, best_model = optim.minimize(
    model=model,
    data=data,
    algo=tpe.suggest,
    max_evals=64,
    trials=Trials(),
    data_args=('my_file.pkl',)
)

What if I need more flexibility loading data and adapting my model?

Hyperas is a convenience wrapper around Hyperopt that has some limitations. If it's not convenient to use in your situation, simply don't use it -- and choose Hyperopt instead. All you can do with Hyperas you can also do with Hyperopt, it's just a different way of defining your model. If you want to squeeze some flexibility out of Hyperas anyway, take a look here.

Running hyperas in parallel?

You can use hyperas to run multiple models in parallel with the use of mongodb (which you'll need to install and setup users for). Here's a short example using MNIST:

  1. Copy and modify examples/mnist_distributed.py (bump up max_evals if you like):

  2. Run python mnist_distributed.py. It will create a temp_model.py file. Copy this file to any machines that will be evaluating models. It will then begin waiting for evaluation results

  3. On your other machines (make sure they have a python installed with all your dependencies, ideally with the same versions) run:

    export PYTHONPATH=/path/to/temp_model.py
    hyperopt-mongo-worker --exp-key='mnist_test' --mongo='mongo://username:[email protected]:27017/jobs'
  4. Once max_evals have been completed, you should get an output with your best model. You can also look through your mongodb and examine the results, to get the best model out and run it, do:

    from pymongo import MongoClient
    from keras.models import load_model
    import tempfile
    c = MongoClient('mongodb://username:[email protected]:27017/jobs')
    best_model = c['jobs']['jobs'].find_one({'exp_key': 'mnist_test'}, sort=[('result.loss', -1)])
    temp_name = tempfile.gettempdir()+'/'+next(tempfile._get_candidate_names()) + '.h5'
    with open(temp_name, 'wb') as outfile:
        outfile.write(best_model['result']['model_serial'])
    model = load_model(temp_name)
Owner
Max Pumperla
Data Science Professor, Data Scientist & Engineer. DL4J core developer, Hyperopt maintainer, Keras contributor. Author of "Deep Learning and the Game of Go"
Max Pumperla
Deep GPs built on top of TensorFlow/Keras and GPflow

GPflux Documentation | Tutorials | API reference | Slack What does GPflux do? GPflux is a toolbox dedicated to Deep Gaussian processes (DGP), the hier

Secondmind Labs 107 Nov 02, 2022
Self-Supervised Collision Handling via Generative 3D Garment Models for Virtual Try-On

Self-Supervised Collision Handling via Generative 3D Garment Models for Virtual Try-On [Project website] [Dataset] [Video] Abstract We propose a new g

71 Dec 24, 2022
Pytorch code for "DPFM: Deep Partial Functional Maps" - 3DV 2021 (Oral)

DPFM Code for "DPFM: Deep Partial Functional Maps" - 3DV 2021 (Oral) Installation This implementation runs on python = 3.7, use pip to install depend

Souhaib Attaiki 29 Oct 03, 2022
code for Fast Point Cloud Registration with Optimal Transport

robot This is the repository for the paper "Accurate Point Cloud Registration with Robust Optimal Transport". We are in the process of refactoring the

28 Jan 04, 2023
Easy-to-use micro-wrappers for Gym and PettingZoo based RL Environments

SuperSuit introduces a collection of small functions which can wrap reinforcement learning environments to do preprocessing ('microwrappers'). We supp

Farama Foundation 357 Jan 06, 2023
Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings

Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings Results on STS Tasks Model STS12 STS13 STS14 STS15 STS16 STSb SICK-R Avg. unsup-prompt-be

196 Jan 08, 2023
Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation"

1 Introduction Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation". The code s

Liang Zhang 10 Dec 10, 2022
Code for "Typilus: Neural Type Hints" PLDI 2020

Typilus A deep learning algorithm for predicting types in Python. Please find a preprint here. This repository contains its implementation (src/) and

47 Nov 08, 2022
UT-Sarulab MOS prediction system using SSL models

UTMOS: UTokyo-SaruLab MOS Prediction System Official implementation of "UTMOS: UTokyo-SaruLab System for VoiceMOS Challenge 2022" submitted to INTERSP

sarulab-speech 58 Nov 22, 2022
Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Bae, Gwangbin 95 Jan 04, 2023
Learning Continuous Signed Distance Functions for Shape Representation

DeepSDF This is an implementation of the CVPR '19 paper "DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation" by Park et a

Meta Research 1.1k Jan 01, 2023
Torch-ngp - A pytorch implementation of the hash encoder proposed in instant-ngp

HashGrid Encoder (WIP) A pytorch implementation of the HashGrid Encoder from ins

hawkey 1k Jan 01, 2023
This repo contains the code required to train the multivariate time-series Transformer.

Multi-Variate Time-Series Transformer This repo contains the code required to train the multivariate time-series Transformer. Download the data The No

Gregory Duthé 4 Nov 24, 2022
A Player for Kanye West's Stem Player. Sort of an emulator.

Stem Player Player Stem Player Player Usage Download the latest release here Optional: install ffmpeg, instructions here NOTE: DOES NOT ENABLE DOWNLOA

119 Dec 28, 2022
RLMeta is a light-weight flexible framework for Distributed Reinforcement Learning Research.

RLMeta rlmeta - a flexible lightweight research framework for Distributed Reinforcement Learning based on PyTorch and moolib Installation To build fro

Meta Research 281 Dec 22, 2022
Clinica is a software platform for clinical research studies involving patients with neurological and psychiatric diseases and the acquisition of multimodal data

Clinica Software platform for clinical neuroimaging studies Homepage | Documentation | Paper | Forum | See also: AD-ML, AD-DL ClinicaDL About The Proj

ARAMIS Lab 165 Dec 29, 2022
MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera

MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera

Felix Wimbauer 494 Jan 06, 2023
Lexical Substitution Framework

LexSubGen Lexical Substitution Framework This repository contains the code to reproduce the results from the paper: Arefyev Nikolay, Sheludko Boris, P

Samsung 37 Sep 15, 2022
code for TCL: Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022

Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022 News (03/16/2022) upload retrieval checkpoints finetuned on COCO and Flickr T

187 Jan 02, 2023
Collection of generative models in Pytorch version.

pytorch-generative-model-collections Original : [Tensorflow version] Pytorch implementation of various GANs. This repository was re-implemented with r

Hyeonwoo Kang 2.4k Dec 31, 2022