Distilled coarse part of LoFTR adapted for compatibility with TensorRT and embedded divices

Overview

Coarse LoFTR TRT

Google Colab demo notebook

This project provides a deep learning model for the Local Feature Matching for two images that can be used on the embedded devices like NVidia Jetson Nano 2GB with a reasonable accuracy and performance - 5 FPS. The algorithm is based on the coarse part of "LoFTR: Detector-Free Local Feature Matching with Transformers". But the model has a reduced number of ResNet and coarse transformer layers so there is the much lower memory consumption and the better performance. The required level of accuracy was achieved by applying the Knowledge distillation technique and training on the BlendedMVS dataset.

The code is based on the original LoFTR repository, but was adapted for compatibility with TensorRT technology, especially dependencies to einsum and einops were removed.

Model weights

Weights for the PyTorch model, ONNX model and TensorRT engine files are located in the weights folder.

Weights for original LoFTR coarse module can be downloaded using the original url that was provider by paper authors, now only the outdoor-ds file is supported.

Demo

There is a Demo application, that can be ran with the webcam.py script. There are following parameters:

  • --weights - The path to PyTorch model weights, for example 'weights/LoFTR_teacher.pt' or 'weights/outdoor_ds.ckpt'
  • --trt - The path to the TensorRT engine, for example 'weights/LoFTR_teacher.trt'
  • --onnx - The path to the ONNX model, for example 'weights/LoFTR_teacher.onnx'
  • --original - If specified the original LoFTR model will be used, can be used only with --weights parameter
  • --camid - OpenCV webcam video capture ID, usually 0 or 1, default 0
  • --device - Selects the runtime back-end CPU or CUDA, default is CUDA

Sample command line:

python3 webcam.py --trt=weights/LoFTR_teacher.trt --camid=0

Demo application shows a window with pair of images captured with a camera. Initially there will be the two same images. Then you can choose a view of interest and press the s button, the view will be remembered and will be visible as the left image. Then you can change the view and press the p button to make a snapshot of the feature matching result, the corresponding features will be marked with the same numbers at the two images. If you press the p button again then application will allow you to change the view and repeat the feature matching process. Also this application shows the real-time FPS counter so you can estimate the model performance.

Training

To repeat the training procedure you should use the low-res set of the BlendedMVS dataset. After download you can use the train.py script to run training process. There are following parameters for this script:

  • --path - Path to the dataset
  • --checkpoint_path - Where to store a log information and checkpoints, default value is 'weights'
  • --weights - Path to the LoFTR teacher model weights, default value is 'weights/outdoor_ds.ckpt'

Sample command line:

python3 train.py --path=/home/user/datasets/BlendedMVS --checkpoint_path=weights/experiment1/

Please use the train/settings.py script to configure the training process. Please notice that by default the following parameters are enabled:

self.batch_size = 32
self.batch_size_divider = 8  # Used for gradient accumulation
self.use_amp = True
self.epochs = 35
self.epoch_size = 5000

This set of parameters was chosen for training with the Nvidia GTX1060 GPU, which is the low level consumer level card. The use_amp parameter means the automatic mixed precision will be used to reduce the memory consumption and the training time. Also, the gradient accumulation technique is enabled with the batch_size_divider parameter, it means the actual batch size will be 32/8 but for larger batch size simulation the 8 batches will be averaged. Moreover, the actual size of the epoch is reduced with the epoch_size parameter, it means that on every epoch only 5000 dataset elements will be randomly picked from the whole dataset.

Paper

@misc{kolodiazhnyi2022local,
      title={Local Feature Matching with Transformers for low-end devices}, 
      author={Kyrylo Kolodiazhnyi},
      year={2022},
      eprint={2202.00770},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

LoFTR Paper:

@article{sun2021loftr,
  title={{LoFTR}: Detector-Free Local Feature Matching with Transformers},
  author={Sun, Jiaming and Shen, Zehong and Wang, Yuang and Bao, Hujun and Zhou, Xiaowei},
  journal={{CVPR}},
  year={2021}
}
Owner
Kirill
Kirill
NL-Augmenter 🦎 → 🐍 A Collaborative Repository of Natural Language Transformations

NL-Augmenter 🦎 → 🐍 The NL-Augmenter is a collaborative effort intended to add transformations of datasets dealing with natural language. Transformat

684 Jan 09, 2023
Official PyTorch Implementation of paper "NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting", EGSR 2021.

NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting Official PyTorch Implementation of paper "NeLF: Neural Light-tran

Ken Lin 38 Dec 26, 2022
Code for the CVPR2021 workshop paper "Noise Conditional Flow Model for Learning the Super-Resolution Space"

NCSR: Noise Conditional Flow Model for Learning the Super-Resolution Space Official NCSR training PyTorch Code for the CVPR2021 workshop paper "Noise

57 Oct 03, 2022
Subnet Replacement Attack: Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks

Subnet Replacement Attack: Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks Official implementation of paper Towards Practic

Xiangyu Qi 8 Dec 30, 2022
Implicit Graph Neural Networks

Implicit Graph Neural Networks This repository is the official PyTorch implementation of "Implicit Graph Neural Networks". Fangda Gu*, Heng Chang*, We

Heng Chang 48 Nov 29, 2022
Contrastive Loss Gradient Attack (CLGA)

Contrastive Loss Gradient Attack (CLGA) Official implementation of Unsupervised Graph Poisoning Attack via Contrastive Loss Back-propagation, WWW22 Bu

12 Dec 23, 2022
Weakly Supervised Segmentation with Tensorflow. Implements instance segmentation as described in Simple Does It: Weakly Supervised Instance and Semantic Segmentation, by Khoreva et al. (CVPR 2017).

Weakly Supervised Segmentation with TensorFlow This repo contains a TensorFlow implementation of weakly supervised instance segmentation as described

Phil Ferriere 220 Dec 13, 2022
Code accompanying paper: Meta-Learning to Improve Pre-Training

Meta-Learning to Improve Pre-Training This folder contains code to run experiments in the paper Meta-Learning to Improve Pre-Training, NeurIPS 2021. P

28 Dec 31, 2022
Multi Camera Calibration

Multi Camera Calibration 'modules/camera_calibration/app/camera_calibration.cpp' is for calculating extrinsic parameter of each individual cameras. 'm

7 Dec 01, 2022
TLXZoo - Pre-trained models based on TensorLayerX

Pre-trained models based on TensorLayerX. TensorLayerX is a multi-backend AI fra

TensorLayer Community 13 Dec 07, 2022
Source code for the Paper: CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints}

CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints Installation Run pipenv install (at your own risk with --skip-lo

Autonomous Learning Group 65 Dec 27, 2022
Official Implementation of 'UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers' ICLR 2021(spotlight)

UPDeT Official Implementation of UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers (ICLR 2021 spotlight) The

hhhusiyi 96 Dec 22, 2022
Fast and accurate optimisation for registration with little learningconvexadam

convexAdam Learn2Reg 2021 Submission Fast and accurate optimisation for registration with little learning Excellent results on Learn2Reg 2021 challeng

17 Dec 06, 2022
A multi-functional library for full-stack Deep Learning. Simplifies Model Building, API development, and Model Deployment.

chitra What is chitra? chitra (चित्र) is a multi-functional library for full-stack Deep Learning. It simplifies Model Building, API development, and M

Aniket Maurya 210 Dec 21, 2022
A modular application for performing anomaly detection in networks

Deep-Learning-Models-for-Network-Annomaly-Detection The modular app consists for mainly three annomaly detection algorithms. The system supports model

Shivam Patel 1 Dec 09, 2021
EMNLP'2021: Simple Entity-centric Questions Challenge Dense Retrievers

EntityQuestions This repository contains the EntityQuestions dataset as well as code to evaluate retrieval results from the the paper Simple Entity-ce

Princeton Natural Language Processing 119 Sep 28, 2022
StarGAN - Official PyTorch Implementation (CVPR 2018)

StarGAN - Official PyTorch Implementation ***** New: StarGAN v2 is available at https://github.com/clovaai/stargan-v2 ***** This repository provides t

Yunjey Choi 5.1k Jan 04, 2023
Joint-task Self-supervised Learning for Temporal Correspondence (NeurIPS 2019)

Joint-task Self-supervised Learning for Temporal Correspondence Project | Paper Overview Joint-task Self-supervised Learning for Temporal Corresponden

Sifei Liu 167 Dec 14, 2022
Lightweight, Python library for fast and reproducible experimentation :microscope:

Steppy What is Steppy? Steppy is a lightweight, open-source, Python 3 library for fast and reproducible experimentation. Steppy lets data scientist fo

minerva.ml 134 Jul 10, 2022
Dynamic View Synthesis from Dynamic Monocular Video

Dynamic View Synthesis from Dynamic Monocular Video Project Website | Video | Paper Dynamic View Synthesis from Dynamic Monocular Video Chen Gao, Ayus

Chen Gao 139 Dec 28, 2022