DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference

Related tags

Deep LearningDeeBERT
Overview

DeeBERT

This is the code base for the paper DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference.

Code in this repository is also available in the Huggingface Transformer repo (with minor modification for version compatibility). Check this page for models that we have trained in advance (the latest version of Huggingface Transformers Library is needed).

Installation

This repo is tested on Python 3.7.5, PyTorch 1.3.1, and Cuda 10.1. Using a virtulaenv or conda environemnt is recommended, for example:

conda install pytorch==1.3.1 torchvision cudatoolkit=10.1 -c pytorch

After installing the required environment, clone this repo, and install the following requirements:

git clone https://github.com/castorini/deebert
cd deebert
pip install -r ./requirements.txt
pip install -r ./examples/requirements.txt

Usage

There are four scripts in the scripts folder, which can be run from the repo root, e.g., scripts/train.sh.

In each script, there are several things to modify before running:

  • path to the GLUE dataset. Check this for more details.
  • path for saving fine-tuned models. Default: ./saved_models.
  • path for saving evaluation results. Default: ./plotting. Results are printed to stdout and also saved to npy files in this directory to facilitate plotting figures and further analyses.
  • model_type (bert or roberta)
  • model_size (base or large)
  • dataset (SST-2, MRPC, RTE, QNLI, QQP, or MNLI)

train.sh

This is for fine-tuning and evaluating models as in the original BERT paper.

train_highway.sh

This is for fine-tuning DeeBERT models.

eval_highway.sh

This is for evaluating each exit layer for fine-tuned DeeBERT models.

eval_entropy.sh

This is for evaluating fine-tuned DeeBERT models, given a number of different early exit entropy thresholds.

Citation

Please cite our paper if you find the repository useful:

@inproceedings{xin-etal-2020-deebert,
    title = "{D}ee{BERT}: Dynamic Early Exiting for Accelerating {BERT} Inference",
    author = "Xin, Ji  and
      Tang, Raphael  and
      Lee, Jaejun  and
      Yu, Yaoliang  and
      Lin, Jimmy",
    booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
    month = jul,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.acl-main.204",
    pages = "2246--2251",
}
Owner
Castorini
Deep learning for natural language processing and information retrieval at the University of Waterloo
Castorini
Benchmarks for semi-supervised domain generalization.

Semi-Supervised Domain Generalization This code is the official implementation of the following paper: Semi-Supervised Domain Generalization with Stoc

Kaiyang 49 Dec 10, 2022
Improving Compound Activity Classification via Deep Transfer and Representation Learning

Improving Compound Activity Classification via Deep Transfer and Representation Learning This repository is the official implementation of Improving C

NingLab 2 Nov 24, 2021
Hybrid CenterNet - Hybrid-supervised object detection / Weakly semi-supervised object detection

Hybrid-Supervised Object Detection System Object detection system trained by hybrid-supervision/weakly semi-supervision (HSOD/WSSOD): This project is

5 Dec 10, 2022
Unified learning approach for egocentric hand gesture recognition and fingertip detection

Unified Gesture Recognition and Fingertip Detection A unified convolutional neural network (CNN) algorithm for both hand gesture recognition and finge

Mohammad 227 Dec 25, 2022
Simple Dynamic Batching Inference

Simple Dynamic Batching Inference 解决了什么问题? 众所周知,Batch对于GPU上深度学习模型的运行效率影响很大。。。 是在Inference时。搜索、推荐等场景自带比较大的batch,问题不大。但更多场景面临的往往是稀碎的请求(比如图片服务里一次一张图)。 如果

116 Jan 01, 2023
ImageNet Adversarial Image Evaluation

ImageNet Adversarial Image Evaluation This repository contains the code and some materials used in the experimental work presented in the following pa

Utku Ozbulak 11 Dec 26, 2022
Simple reimplemetation experiments about FcaNet

FcaNet-CIFAR An implementation of the paper FcaNet: Frequency Channel Attention Networks on CIFAR10/CIFAR100 dataset. how to run Code: python Cifar.py

76 Feb 04, 2021
Reproduces ResNet-V3 with pytorch

ResNeXt.pytorch Reproduces ResNet-V3 (Aggregated Residual Transformations for Deep Neural Networks) with pytorch. Tried on pytorch 1.6 Trains on Cifar

Pau Rodriguez 481 Dec 23, 2022
Test-Time Personalization with a Transformer for Human Pose Estimation, NeurIPS 2021

Transforming Self-Supervision in Test Time for Personalizing Human Pose Estimation This is an official implementation of the NeurIPS 2021 paper: Trans

41 Nov 28, 2022
Demonstration of transfer of knowledge and generalization with distillation

Distilling-the-Knowledge-in-a-Neural-Network This is an implementation of a part of the paper "Distilling the Knowledge in a Neural Network" (https://

26 Nov 25, 2022
BTC-Generator - BTC Generator With Python

Что такое BTC-Generator? Это генератор чеков всеми любимого @BTC_BANKER_BOT Для

DoomGod 3 Aug 24, 2022
Data, model training, and evaluation code for "PubTables-1M: Towards a universal dataset and metrics for training and evaluating table extraction models".

PubTables-1M This repository contains training and evaluation code for the paper "PubTables-1M: Towards a universal dataset and metrics for training a

Microsoft 365 Jan 04, 2023
A PyTorch port of the Neural 3D Mesh Renderer

Neural 3D Mesh Renderer (CVPR 2018) This repo contains a PyTorch implementation of the paper Neural 3D Mesh Renderer by Hiroharu Kato, Yoshitaka Ushik

Daniilidis Group University of Pennsylvania 1k Jan 09, 2023
OOD Dataset Curator and Benchmark for AI-aided Drug Discovery

🔥 DrugOOD 🔥 : OOD Dataset Curator and Benchmark for AI Aided Drug Discovery This is the official implementation of the DrugOOD project, this is the

108 Dec 17, 2022
Official Implementation of "Learning Disentangled Behavior Embeddings"

DBE: Disentangled-Behavior-Embedding Official implementation of Learning Disentangled Behavior Embeddings (NeurIPS 2021). Environment requirement The

Mishne Lab 12 Sep 28, 2022
《Rethinking Sptil Dimensions of Vision Trnsformers》(2021)

Rethinking Spatial Dimensions of Vision Transformers Byeongho Heo, Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Junsuk Choe, Seong Joon Oh | Paper NAVER

NAVER AI 224 Dec 27, 2022
Using fully convolutional networks for semantic segmentation with caffe for the cityscapes dataset

Using fully convolutional networks for semantic segmentation (Shelhamer et al.) with caffe for the cityscapes dataset How to get started Download the

Simon Guist 27 Jun 06, 2022
[Link]deep_portfolo - Use Reforcemet earg ad Supervsed learg to Optmze portfolo allocato []

rl_portfolio This Repository uses Reinforcement Learning and Supervised learning to Optimize portfolio allocation. The goal is to make profitable agen

Deepender Singla 165 Dec 02, 2022
Use stochastic processes to generate samples and use them to train a fully-connected neural network based on Keras

Use stochastic processes to generate samples and use them to train a fully-connected neural network based on Keras which will then be used to generate residuals

Federico Lopez 2 Jan 14, 2022
Evolutionary Scale Modeling (esm): Pretrained language models for proteins

Evolutionary Scale Modeling This repository contains code and pre-trained weights for Transformer protein language models from Facebook AI Research, i

Meta Research 1.6k Jan 09, 2023