Boost learning for GNNs from the graph structure under challenging heterophily settings. (NeurIPS'20)

Overview

Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. 2020. Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs. Advances in Neural Information Processing Systems 33 (2020).

[Paper] [Poster] [Slides]

Requirements

Basic Requirements

  • Python >= 3.7 (tested on 3.8)

  • signac: this package utilizes signac to manage experiment data and jobs. signac can be installed with the following command:

    pip install signac==1.1 signac-flow==0.7.1 signac-dashboard

    Note that the latest version of signac may cause incompatibility.

  • numpy (tested on 1.18.5)

  • scipy (tested on 1.5.0)

  • networkx >= 2.4 (tested on 2.4)

  • scikit-learn (tested on 0.23.2)

For H2GCN

  • TensorFlow >= 2.0 (tested on 2.2)

Note that it is possible to use H2GCN without signac and scikit-learn on your own data and experimental framework.

For baselines

We also include the code for the baseline methods in the repository. These code are mostly the same as the reference implementations provided by the authors, with our modifications to add JK-connections, interoperability with our experimental pipeline, etc. For the requirements to run these baselines, please refer to the instructions provided by the original authors of the corresponding code, which could be found in each folder under /baselines.

As a general note, TensorFlow 1.15 can be used for all code requiring TensorFlow 1.x; for PyTorch, it is usually fine to use PyTorch 1.6; all code should be able to run under Python >= 3.7. In addition, the basic requirements must also be met.

Usage

Download Datasets

The datasets can be downloaded using the bash scripts provided in /experiments/h2gcn/scripts, which also prepare the datasets for use in our experimental framework based on signac.

We make use of signac to index and manage the datasets: the datasets and experiments are stored in hierarchically organized signac jobs, with the 1st level storing different graphs, 2nd level storing different sets of features, and 3rd level storing different training-validation-test splits. Each level contains its own state points and job documents to differentiate with other jobs.

Use signac schema to list all available properties in graph state points; use signac find to filter graphs using properties in the state points:

cd experiments/h2gcn/

# List available properties in graph state points
signac schema

# Find graphs in syn-products with homophily level h=0.1
signac find numNode 10000 h 0.1

# Find real benchmark "Cora"
signac find benchmark true datasetName\.\$regex "cora"

/experiments/h2gcn/utils/signac_tools.py provides helpful functions to iterate through the data space in Python; more usages of signac can be found in these documents.

Replicate Experiments with signac

  • To replicate our experiments of each model on specific datasets, use Python scripts in /experiments/h2gcn, and the corresponding JSON config files in /experiments/h2gcn/configs. For example, to run H2GCN on our synthetic benchmarks syn-cora:

    cd experiments/h2gcn/
    python run_hgcn_experiments.py -c configs/syn-cora/h2gcn.json [-i] run [-p PARALLEL_NUM]
    • Files and results generated in experiments are also stored with signac on top of the hierarchical order introduced above: the 4th level separates different models, and the 5th level stores files and results generated in different runs with different parameters of the same model.

    • By default, stdout and stderr of each model are stored in terminal_output.log in the 4th level; use -i if you want to see them through your terminal.

    • Use -p if you want to run experiments in parallel on multiple graphs (1st level).

    • Baseline models can be run through the following scripts:

      • GCN, GCN-Cheby, GCN+JK and GCN-Cheby+JK: run_gcn_experiments.py
      • GraphSAGE, GraphSAGE+JK: run_graphsage_experiments.py
      • MixHop: run_mixhop_experiments.py
      • GAT: run_gat_experiments.py
      • MLP: run_hgcn_experiments.py
  • To summarize experiment results of each model on specific datasets to a CSV file, use Python script /experiments/h2gcn/run_experiments_summarization.py with the corresponding model name and config file. For example, to summarize H2GCN results on our synthetic benchmark syn-cora:

    cd experiments/h2gcn/
    python run_experiments_summarization.py h2gcn -f configs/syn-cora/h2gcn.json
  • To list all paths of the 3rd level datasets splits used in a experiment (in planetoid format) without running experiments, use the following command:

    cd experiments/h2gcn/
    python run_hgcn_experiments.py -c configs/syn-cora/h2gcn.json --check_paths run

Standalone H2GCN Package

Our implementation of H2GCN is stored in the h2gcn folder, which can be used as a standalone package on your own data and experimental framework.

Example usages:

  • H2GCN-2

    cd h2gcn
    python run_experiments.py H2GCN planetoid \
      --dataset ind.citeseer \
      --dataset_path ../baselines/gcn/gcn/data/
  • H2GCN-1

    cd h2gcn
    python run_experiments.py H2GCN planetoid \
      --network_setup M64-R-T1-G-V-C1-D0.5-MO \
      --dataset ind.citeseer \
      --dataset_path ../baselines/gcn/gcn/data/
  • Use --help for more advanced usages:

    python run_experiments.py H2GCN planetoid --help

We only support datasets stored in planetoid format. You could also add support to different data formats and models beyond H2GCN by adding your own modules to /h2gcn/datasets and /h2gcn/models, respectively; check out ou code for more details.

Contact

Please contact Jiong Zhu ([email protected]) in case you have any questions.

Citation

Please cite our paper if you make use of this code in your own work:

@article{zhu2020beyond,
  title={Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs},
  author={Zhu, Jiong and Yan, Yujun and Zhao, Lingxiao and Heimann, Mark and Akoglu, Leman and Koutra, Danai},
  journal={Advances in Neural Information Processing Systems},
  volume={33},
  year={2020}
}
Owner
GEMS Lab: Graph Exploration & Mining at Scale, University of Michigan
Code repository for work by the GEMS Lab: https://gemslab.github.io/research/
GEMS Lab: Graph Exploration & Mining at Scale, University of Michigan
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility

Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built

Tensorpack 6.2k Jan 09, 2023
Repository for MDPGT

MD-PGT Repository for implementing and reproducing the results for the paper MDPGT: Momentum-based Decentralized Policy Gradient Tracking. Available E

Xian Yeow Lee 2 Dec 30, 2021
Vision Deep-Learning using Tensorflow, Keras.

Welcome! I am a computer vision deep learning developer working in Korea. This is my blog, and you can see everything I've studied here. https://www.n

kimminjun 6 Dec 14, 2022
Repository for benchmarking graph neural networks

Benchmarking Graph Neural Networks Updates Nov 2, 2020 Project based on DGL 0.4.2. See the relevant dependencies defined in the environment yml files

NTU Graph Deep Learning Lab 2k Jan 03, 2023
Multi-tool reverse engineering collaboration solution.

CollaRE v0.3 Intorduction CollareRE is a tool for collaborative reverse engineering that aims to allow teams that do need to use more then one tool du

105 Nov 27, 2022
Unofficial implementation of the paper: PonderNet: Learning to Ponder in TensorFlow

PonderNet-TensorFlow This is an Unofficial Implementation of the paper: PonderNet: Learning to Ponder in TensorFlow. Official PyTorch Implementation:

1 Oct 23, 2022
Visualizing lattice vibration information from phonon dispersion to atoms (For GPUMD)

Phonon-Vibration-Viewer (For GPUMD) Visualizing lattice vibration information from phonon dispersion for primitive atoms. In this tutorial, we will in

Liangting 6 Dec 10, 2022
Nested Graph Neural Network (NGNN) is a general framework to improve a base GNN's expressive power and performance

Nested Graph Neural Networks About Nested Graph Neural Network (NGNN) is a general framework to improve a base GNN's expressive power and performance.

Muhan Zhang 38 Jan 05, 2023
FAVD: Featherweight Assisted Vulnerability Discovery

FAVD: Featherweight Assisted Vulnerability Discovery This repository contains the replication package for the paper "Featherweight Assisted Vulnerabil

secureIT 4 Sep 16, 2022
Core ML tools contain supporting tools for Core ML model conversion, editing, and validation.

Core ML Tools Use coremltools to convert machine learning models from third-party libraries to the Core ML format. The Python package contains the sup

Apple 3k Jan 08, 2023
Current state of supervised and unsupervised depth completion methods

Awesome Depth Completion Table of Contents About Sparse-to-Dense Depth Completion Current State of Depth Completion Unsupervised VOID Benchmark Superv

224 Dec 28, 2022
Large-scale open domain KNOwledge grounded conVERsation system based on PaddlePaddle

Knover Knover is a toolkit for knowledge grounded dialogue generation based on PaddlePaddle. Knover allows researchers and developers to carry out eff

607 Dec 31, 2022
MAT: Mask-Aware Transformer for Large Hole Image Inpainting

MAT: Mask-Aware Transformer for Large Hole Image Inpainting (CVPR2022, Oral) Wenbo Li, Zhe Lin, Kun Zhou, Lu Qi, Yi Wang, Jiaya Jia [Paper] News This

254 Dec 29, 2022
Mmdet benchmark with python

mmdet_benchmark 本项目是为了研究 mmdet 推断性能瓶颈,并且对其进行优化。 配置与环境 机器配置 CPU:Intel(R) Core(TM) i9-10900K CPU @ 3.70GHz GPU:NVIDIA GeForce RTX 3080 10GB 内存:64G 硬盘:1T

杨培文 (Yang Peiwen) 24 May 21, 2022
A Pytorch Implementation of ClariNet

ClariNet A Pytorch Implementation of ClariNet (Mel Spectrogram -- Waveform) Requirements PyTorch 0.4.1 & python 3.6 & Librosa Examples Step 1. Downlo

Sungwon Kim 286 Sep 15, 2022
Fuzzing the Kernel Using Unicornafl and AFL++

Unicorefuzz Fuzzing the Kernel using UnicornAFL and AFL++. For details, skim through the WOOT paper or watch this talk at CCCamp19. Is it any good? ye

Security in Telecommunications 283 Dec 26, 2022
Official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition" in AAAI2022.

AimCLR This is an official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Reco

Gty 44 Dec 17, 2022
Multi-objective constrained optimization for energy applications via tree ensembles

Multi-objective constrained optimization for energy applications via tree ensembles

C⚙G - Imperial College London 1 Nov 19, 2021
CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation

CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation (CVPR 2021, oral presentation) CoCosNet v2: Full-Resolution Correspondence

Microsoft 308 Dec 07, 2022
SegNet including indices pooling for Semantic Segmentation with tensorflow and keras

SegNet SegNet is a model of semantic segmentation based on Fully Comvolutional Network. This repository contains the implementation of learning and te

Yuta Kamikawa 172 Dec 23, 2022