InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal Artifact Reduction in CT Images

Overview

InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal Artifact Reduction in CT Images

Hong Wang, Yuexiang Li, Haimiao Zhang, Deyu Meng, Yefeng Zheng

[[Arxiv]] Coming Soon !

The conference paper is InDuDoNet(MICCAI2021)

Abstract

During the computed tomography (CT) imaging process, metallic implants within patients always cause harmful artifacts, which adversely degrade the visual quality of reconstructed CT images and negatively affect the subsequent clinical diagnosis. For the metal artifact reduction (MAR) task, current deep learning based methods have achieved promising performance. However, most of them share two main common limitations: 1) the CT physical imaging geometry constraint is not comprehensively incorporated into deep network structures; 2) the entire framework has weak interpretability for the specific MAR task; hence, the role of every network module is difficult to be evaluated. To alleviate these issues, in the paper, we construct a novel interpretable dual domain network, termed InDuDoNet+, into which CT imaging process is finely embedded. Concretely, we derive a joint spatial and Radon domain reconstruction model and propose an optimization algorithm with only simple operators for solving it. By unfolding the iterative steps involved in the proposed algorithm into the corresponding network modules, we easily build the InDuDoNet+ with clear interpretability. Furthermore, we analyze the CT values among different tissues, and merge the prior observations into a prior network for our InDuDoNet+, which significantly improve its generalization performance. Comprehensive experiments on synthesized data and clinical data substantiate the superiority of the proposed methods as well as the superior generalization performance beyond the current state-of-the-art (SOTA) MAR methods.

Dependicies

Refer to InDuDoNet

Dataset & Training & Testing

Refer to InDuDoNet

Citations

@inproceedings{wang2021indudonetplus,
  title={InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal Artifact Reduction in CT Images},
  author={Wang, Hong and Li, Yuexiang and Zhang, Haimiao and Meng, Deyu and Zheng, Yefeng},
  booktitle={Arxiv},
  year={2021},
}

Contact

If you have any question, please feel free to concat Hong Wang (Email: [email protected])

Owner
Hong Wang
Natural Image Enhancement and Restoration, Medical Image Reconstruction, Image Processing, Joint Model-Driven and Data-Driven
Hong Wang
Official code for the CVPR 2021 paper "How Well Do Self-Supervised Models Transfer?"

How Well Do Self-Supervised Models Transfer? This repository hosts the code for the experiments in the CVPR 2021 paper How Well Do Self-Supervised Mod

Linus Ericsson 157 Dec 16, 2022
Extension to fastai for volumetric medical data

FAIMED 3D use fastai to quickly train fully three-dimensional models on radiological data Classification from faimed3d.all import * Load data in vari

Keno 26 Aug 22, 2022
PySLM Python Library for Selective Laser Melting and Additive Manufacturing

PySLM Python Library for Selective Laser Melting and Additive Manufacturing PySLM is a Python library for supporting development of input files used i

Dr Luke Parry 35 Dec 27, 2022
The repo for the paper "I3CL: Intra- and Inter-Instance Collaborative Learning for Arbitrary-shaped Scene Text Detection".

I3CL: Intra- and Inter-Instance Collaborative Learning for Arbitrary-shaped Scene Text Detection Updates | Introduction | Results | Usage | Citation |

33 Jan 05, 2023
The FIRST GANs-based omics-to-omics translation framework

OmiTrans Please also have a look at our multi-omics multi-task DL freamwork 👀 : OmiEmbed The FIRST GANs-based omics-to-omics translation framework Xi

Xiaoyu Zhang 6 Dec 14, 2022
Code repository accompanying the paper "On Adversarial Robustness: A Neural Architecture Search perspective"

On Adversarial Robustness: A Neural Architecture Search perspective Preparation: Clone the repository: https://github.com/tdchaitanya/nas-robustness.g

Chaitanya Devaguptapu 4 Nov 10, 2022
AFLFast (extends AFL with Power Schedules)

AFLFast Power schedules implemented by Marcel Böhme [email protected]

Marcel Böhme 380 Jan 03, 2023
MM1 and MMC Queue Simulation using python - Results and parameters in excel and csv files

implementation of MM1 and MMC Queue on randomly generated data and evaluate simulation results then compare with analytical results and draw a plot curve for them, simulate some integrals and compare

Mohamadreza Rezaei 1 Jan 19, 2022
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility

Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built

Tensorpack 6.2k Jan 09, 2023
SciPy fixes and extensions

scipyx SciPy is large library used everywhere in scientific computing. That's why breaking backwards-compatibility comes as a significant cost and is

Nico Schlömer 16 Jul 17, 2022
an implementation of 3D Ken Burns Effect from a Single Image using PyTorch

3d-ken-burns This is a reference implementation of 3D Ken Burns Effect from a Single Image [1] using PyTorch. Given a single input image, it animates

Simon Niklaus 1.4k Dec 28, 2022
(NeurIPS 2021) Realistic Evaluation of Transductive Few-Shot Learning

Realistic evaluation of transductive few-shot learning Introduction This repo contains the code for our NeurIPS 2021 submitted paper "Realistic evalua

Olivier Veilleux 14 Dec 13, 2022
[ICLR 2021] Rank the Episodes: A Simple Approach for Exploration in Procedurally-Generated Environments.

[ICLR 2021] RAPID: A Simple Approach for Exploration in Reinforcement Learning This is the Tensorflow implementation of ICLR 2021 paper Rank the Episo

Daochen Zha 48 Nov 21, 2022
A privacy-focused, intelligent security camera system.

Self-Hosted Home Security Camera System A privacy-focused, intelligent security camera system. Features: Multi-camera support w/ minimal configuration

Scott Barnes 175 Jan 01, 2023
DeepMetaHandles: Learning Deformation Meta-Handles of 3D Meshes with Biharmonic Coordinates

DeepMetaHandles (CVPR2021 Oral) [paper] [animations] DeepMetaHandles is a shape deformation technique. It learns a set of meta-handles for each given

Liu Minghua 73 Dec 15, 2022
Yolo Traffic Light Detection With Python

Yolo-Traffic-Light-Detection This project is based on detecting the Traffic light. Pretained data is used. This application entertained both real time

Ananta Raj Pant 2 Aug 08, 2022
CS550 Machine Learning course project on CNN Detection.

CNN Detection (CS550 Machine Learning Project) Team Members (Tensor) : Yadava Kishore Chodipilli (11940310) Thashmitha BS (11941250) This is a work do

yaadava_kishore 2 Jan 30, 2022
Implementation of the GBST block from the Charformer paper, in Pytorch

Charformer - Pytorch Implementation of the GBST (gradient-based subword tokenization) module from the Charformer paper, in Pytorch. The paper proposes

Phil Wang 105 Dec 26, 2022
I-SECRET: Importance-guided fundus image enhancement via semi-supervised contrastive constraining

I-SECRET This is the implementation of the MICCAI 2021 Paper "I-SECRET: Importance-guided fundus image enhancement via semi-supervised contrastive con

13 Dec 02, 2022
Weakly Supervised Scene Text Detection using Deep Reinforcement Learning

Weakly Supervised Scene Text Detection using Deep Reinforcement Learning This repository contains the setup for all experiments performed in our Paper

Emanuel Metzenthin 3 Dec 16, 2022