an implementation of 3D Ken Burns Effect from a Single Image using PyTorch

Overview

3d-ken-burns

This is a reference implementation of 3D Ken Burns Effect from a Single Image [1] using PyTorch. Given a single input image, it animates this still image with a virtual camera scan and zoom subject to motion parallax. Should you be making use of our work, please cite our paper [1].

Paper

setup

Several functions are implemented in CUDA using CuPy, which is why CuPy is a required dependency. It can be installed using pip install cupy or alternatively using one of the provided binary packages as outlined in the CuPy repository. Please also make sure to have the CUDA_HOME environment variable configured.

In order to generate the video results, please also make sure to have pip install moviepy installed.

usage

To run it on an image and generate the 3D Ken Burns effect fully automatically, use the following command.

python autozoom.py --in ./images/doublestrike.jpg --out ./autozoom.mp4

To start the interface that allows you to manually adjust the camera path, use the following command. You can then navigate to http://localhost:8080/ and load an image using the button on the bottom right corner. Please be patient when loading an image and saving the result, there is a bit of background processing going on.

python interface.py

To run the depth estimation to obtain the raw depth estimate, use the following command. Please note that this script does not perform the depth adjustment, see #22 for information on how to add it.

python depthestim.py --in ./images/doublestrike.jpg --out ./depthestim.npy

To benchmark the depth estimation, run python benchmark-ibims.py or python benchmark-nyu.py. You can use it to easily verify that the provided implementation runs as expected.

colab

If you do not have a suitable environment to run this projects then you could give Colab a try. It allows you to run the project in the cloud, free of charge. There are several people who provide Colab notebooks that should get you started. A few that I am aware of include one from Arnaldo Gabriel, one from Vlad Alex, and one from Ahmed Harmouche.

dataset

This dataset is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License (CC BY-NC-SA 4.0) and may only be used for non-commercial purposes. Please see the LICENSE file for more information.

scene mode color depth normal
asdf flying 3.7 GB 1.0 GB 2.9 GB
asdf walking 3.6 GB 0.9 GB 2.7 GB
blank flying 3.2 GB 1.0 GB 2.8 GB
blank walking 3.0 GB 0.9 GB 2.7 GB
chill flying 5.4 GB 1.1 GB 10.8 GB
chill walking 5.2 GB 1.0 GB 10.5 GB
city flying 0.8 GB 0.2 GB 0.9 GB
city walking 0.7 GB 0.2 GB 0.8 GB
environment flying 1.9 GB 0.5 GB 3.5 GB
environment walking 1.8 GB 0.5 GB 3.3 GB
fort flying 5.0 GB 1.1 GB 9.2 GB
fort walking 4.9 GB 1.1 GB 9.3 GB
grass flying 1.1 GB 0.2 GB 1.9 GB
grass walking 1.1 GB 0.2 GB 1.6 GB
ice flying 1.2 GB 0.2 GB 2.1 GB
ice walking 1.2 GB 0.2 GB 2.0 GB
knights flying 0.8 GB 0.2 GB 1.0 GB
knights walking 0.8 GB 0.2 GB 0.9 GB
outpost flying 4.8 GB 1.1 GB 7.9 GB
outpost walking 4.6 GB 1.0 GB 7.4 GB
pirates flying 0.8 GB 0.2 GB 0.8 GB
pirates walking 0.7 GB 0.2 GB 0.8 GB
shooter flying 0.9 GB 0.2 GB 1.1 GB
shooter walking 0.9 GB 0.2 GB 1.0 GB
shops flying 0.2 GB 0.1 GB 0.2 GB
shops walking 0.2 GB 0.1 GB 0.2 GB
slums flying 0.5 GB 0.1 GB 0.8 GB
slums walking 0.5 GB 0.1 GB 0.7 GB
subway flying 0.5 GB 0.1 GB 0.9 GB
subway walking 0.5 GB 0.1 GB 0.9 GB
temple flying 1.7 GB 0.4 GB 3.1 GB
temple walking 1.7 GB 0.3 GB 2.8 GB
titan flying 6.2 GB 1.1 GB 11.5 GB
titan walking 6.0 GB 1.1 GB 11.3 GB
town flying 1.7 GB 0.3 GB 3.0 GB
town walking 1.8 GB 0.3 GB 3.0 GB
underland flying 5.4 GB 1.2 GB 12.1 GB
underland walking 5.1 GB 1.2 GB 11.4 GB
victorian flying 0.5 GB 0.1 GB 0.8 GB
victorian walking 0.4 GB 0.1 GB 0.7 GB
village flying 1.6 GB 0.3 GB 2.8 GB
village walking 1.6 GB 0.3 GB 2.7 GB
warehouse flying 0.9 GB 0.2 GB 1.5 GB
warehouse walking 0.8 GB 0.2 GB 1.4 GB
western flying 0.8 GB 0.2 GB 0.9 GB
western walking 0.7 GB 0.2 GB 0.8 GB

Please note that this is an updated version of the dataset that we have used in our paper. So while it has fewer scenes in total, each sample capture now has a varying focal length which should help with generalizability. Furthermore, some examples are either over- or under-exposed and it would be a good idea to remove these outliers. Please see #37, #39, and #40 for supplementary discussions.

video

Video

license

This is a project by Adobe Research. It is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License (CC BY-NC-SA 4.0) and may only be used for non-commercial purposes. Please see the LICENSE file for more information.

references

[1]  @article{Niklaus_TOG_2019,
         author = {Simon Niklaus and Long Mai and Jimei Yang and Feng Liu},
         title = {3D Ken Burns Effect from a Single Image},
         journal = {ACM Transactions on Graphics},
         volume = {38},
         number = {6},
         pages = {184:1--184:15},
         year = {2019}
     }

acknowledgment

The video above uses materials under a Creative Common license or with the owner's permission, as detailed at the end.

Owner
Simon Niklaus
Research Scientist at Adobe
Simon Niklaus
deep_image_prior_extension

Code for "Is Deep Image Prior in Need of a Good Education?" Project page: https://jleuschn.github.io/docs.educated_deep_image_prior/. Supplementary Ma

riccardo barbano 7 Jan 09, 2022
Safe Model-Based Reinforcement Learning using Robust Control Barrier Functions

README Repository containing the code for the paper "Safe Model-Based Reinforcement Learning using Robust Control Barrier Functions". Specifically, an

Yousef Emam 13 Nov 24, 2022
Implementation of Sequence Generative Adversarial Nets with Policy Gradient

SeqGAN Requirements: Tensorflow r1.0.1 Python 2.7 CUDA 7.5+ (For GPU) Introduction Apply Generative Adversarial Nets to generating sequences of discre

Lantao Yu 2k Dec 29, 2022
An Artificial Intelligence trying to drive a car by itself on a user created map

An Artificial Intelligence trying to drive a car by itself on a user created map

Akhil Sahukaru 17 Jan 13, 2022
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

This repository holds NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pytorch. Some of the code here will be included in upstream Pytorch eventually. The intenti

NVIDIA Corporation 6.9k Jan 03, 2023
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intelligent Systems Lab Org 1.3k Jan 02, 2023
Make your own game in a font!

Project structure. Included is a suite of tools to create font games. Tutorial: For a quick tutorial about how to make your own game go here For devel

Michael Mulet 125 Dec 04, 2022
The PyTorch implementation of paper REST: Debiased Social Recommendation via Reconstructing Exposure Strategies

REST The PyTorch implementation of paper REST: Debiased Social Recommendation via Reconstructing Exposure Strategies. Usage Download dataset Download

DMIRLAB 2 Mar 13, 2022
This is a Keras implementation of a CNN for estimating age, gender and mask from a camera.

face-detector-age-gender This is a Keras implementation of a CNN for estimating age, gender and mask from a camera. Before run face detector app, expr

Devdreamsolution 2 Dec 04, 2021
UFT - Universal File Transfer With Python

UFT 2.0.0 UFT (Universal File Transfer) is a CLI tool , which can be used to upl

Merwin 1 Feb 18, 2022
Codebase of deep learning models for inferring stability of mRNA molecules

Kaggle OpenVaccine Models Codebase of deep learning models for inferring stability of mRNA molecules, corresponding to the Kaggle Open Vaccine Challen

Eternagame 40 Dec 29, 2022
SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks (Scientific Reports)

SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks Molecular interaction networks are powerful resources for the discovery. While dee

Kexin Huang 49 Oct 15, 2022
Event sourced bank - A wide-and-shallow example using the Python event sourcing library

Event Sourced Bank A "wide but shallow" example of using the Python event sourci

3 Mar 09, 2022
Discovering Dynamic Salient Regions with Spatio-Temporal Graph Neural Networks

Discovering Dynamic Salient Regions with Spatio-Temporal Graph Neural Networks This is the official code for DyReg model inroduced in Discovering Dyna

Bitdefender Machine Learning 11 Nov 08, 2022
TensorRT examples (Jetson, Python/C++)(object detection)

TensorRT examples (Jetson, Python/C++)(object detection)

Nobuo Tsukamoto 53 Dec 22, 2022
Implementation of the state-of-the-art vision transformers with tensorflow

ViT Tensorflow This repository contains the tensorflow implementation of the state-of-the-art vision transformers (a category of computer vision model

Mohammadmahdi NouriBorji 2 Mar 16, 2022
make ASCII Art by Deep Learning

DeepAA This is convolutional neural networks generating ASCII art. This repository is under construction. This work is accepted by NIPS 2017 Workshop,

OsciiArt 1.4k Dec 28, 2022
Fog Simulation on Real LiDAR Point Clouds for 3D Object Detection in Adverse Weather

LiDAR fog simulation Created by Martin Hahner at the Computer Vision Lab of ETH Zurich. This is the official code release of the paper Fog Simulation

Martin Hahner 110 Dec 30, 2022
Code for technical report "An Improved Baseline for Sentence-level Relation Extraction".

RE_improved_baseline Code for technical report "An Improved Baseline for Sentence-level Relation Extraction". Requirements torch = 1.8.1 transformers

Wenxuan Zhou 74 Nov 29, 2022
[CVPR'22] Official PyTorch Implementation of Collaborative Transformers for Grounded Situation Recognition

[CVPR'22] Collaborative Transformers for Grounded Situation Recognition Paper | Model Checkpoint This is the official PyTorch implementation of Collab

Junhyeong Cho 29 Dec 10, 2022