SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks (Scientific Reports)

Related tags

Deep LearningSkipGNN
Overview

SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks

Molecular interaction networks are powerful resources for the discovery. While deep learning on graphs has dramatically advanced the prediction prowess, current graph neural network (GNN) methods are optimized for prediction on the basis of direct similarity between interacting nodes. In biological networks, however, similarity between nodes that do not directly interact has proved incredibly useful in the last decade across a variety of interaction networks.

Here, we present SkipGNN, it predicts molecular interactions by not only aggregating information from direct interactions but also from second-order interactions, which we call skip similarity. In contrast to existing GNNs, SkipGNN receives neural messages from two-hop neighbors as well as immediate neighbors in the interaction network and non-linearly transforms the messages to obtain useful information for prediction.

fig1

(Left) Traditionally, an interaction between nodes A and B implies that A and B are similar and vice versa. (Right) In contrast, in molecular interaction networks, directly interacting entities are not necessarily similar, which has been observed in numerous networks, including genetic interaction networks and protein-protein interaction networks.

Install

git clone https://github.com/kexinhuang12345/SkipGNN.git
cd SkipGNN
python setup.py install

Example

python train.py \
    --epochs 15 \
    --lr 5e-4 \
    --batch_size 256 \
    --hidden1 64 \
    --hidden2 16 \
    --hidden_decode1 512 \
    --network_type DTI \
    --data_path '../data/DTI/fold1' \
    --input_type one_hot

You can change the network_type to DTI, DDI, PPI, GDI. Please change the data_path accordingly.

In the paper, we use node2vec to initialize the node attributes. But empirically, we find simple one-hot position encoding is also good for SkipGNN. If you want to reproduce the result, you could put the node2vec embedding generated from this repo under data/DTI/fold1/dti.emb and set --input_type node2vec.

A Jupyter notebook example is provided in DEMO.

Dataset

We provide the dataset in the data folder.

Data Source Description Processing Code
DTI BIOSNAP A drug-target interaction network betweeen 5,018 drugs that target 2,325 proteins with 15,139 interactions. The drugs are from the US market. data_process_DTI.ipynb
DDI BIOSNAP A drug-drug interaction network betweeen 1,514 drugs with 48,514 interactions, which are approved by the FDA. data_process_DDI.ipynb
PPI HuRI A protein-protein interaction network from the Human Reference Protein Interactome Mapping Project. We use the HuRI-III version from the L3 paper. It consists of 5,604 proteins with 23,322 interactions. data_process_PPI.ipynb
GDI DisGeNET A disease-gene association network betweeen 9,413 genes and 10,370 diseases with 81,746 associations, which are curated from GWAS studies. data_process_GDI.ipynb

Skip-Graph Construction

To integrate the power of skip-graph in your own GNN codes, you could simply apply a new GNN on the skip graph, which is generated using two lines. adj is a scipy.sparse adjacency matrix for the original graph.

adj_skip = adj.dot(adj)
adj_skip = adj_skip.sign()

See here for more details.

Cite Us

Cite arxiv for now:

@article{huang2020skipgnn,
  title={SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks},
  author={Huang, Kexin and Xiao, Cao and Glass, Lucas and Zitnik, Marinka and Sun, Jimeng},
  journal={arXiv preprint arXiv:2004.14949},
  year={2020}
}

The code framework is based on pygcn.

Contact

Please send questions to [email protected] or open an issue.

Owner
Kexin Huang
Health Data Science @ Harvard, prev. NYU Math & CS
Kexin Huang
[ACM MM2021] MGH: Metadata Guided Hypergraph Modeling for Unsupervised Person Re-identification

Introduction This project is developed based on FastReID, which is an ongoing ReID project. Projects BUC In projects/BUC, we implement AAAI 2019 paper

WuYiming 7 Apr 13, 2022
Deep Learning segmentation suite designed for 2D microscopy image segmentation

Deep Learning segmentation suite dessigned for 2D microscopy image segmentation This repository provides researchers with a code to try different enco

7 Nov 03, 2022
AI grand challenge 2020 Repo (Speech Recognition Track)

KorBERT를 활용한 한국어 텍스트 기반 위협 상황인지(2020 인공지능 그랜드 챌린지) 본 프로젝트는 ETRI에서 제공된 한국어 korBERT 모델을 활용하여 폭력 기반 한국어 텍스트를 분류하는 다양한 분류 모델들을 제공합니다. 본 개발자들이 참여한 2020 인공지

Young-Seok Choi 23 Jan 25, 2022
This repository contains the code for TACL2021 paper: SummaC: Re-Visiting NLI-based Models for Inconsistency Detection in Summarization

SummaC: Summary Consistency Detection This repository contains the code for TACL2021 paper: SummaC: Re-Visiting NLI-based Models for Inconsistency Det

Philippe Laban 24 Jan 03, 2023
Stacs-ci - A set of modules to enable integration of STACS with commonly used CI / CD systems

Static Token And Credential Scanner CI Integrations What is it? STACS is a YARA

STACS 18 Aug 04, 2022
Research code for the paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual Language Models"

Introduction This repository contains research code for the ACL 2021 paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual

AdapterHub 20 Aug 04, 2022
Scalable implementation of Lee / Mykland (2012) and Ait-Sahalia / Jacod (2012) Jump tests for noisy high frequency data

JumpDetectR Name of QuantLet : JumpDetectR Published in : 'To be published as "Jump dynamics in high frequency crypto markets"' Description : 'Scala

LvB 12 Jan 01, 2023
Pure python implementation reverse-mode automatic differentiation

MiniGrad A minimal implementation of reverse-mode automatic differentiation (a.k.a. autograd / backpropagation) in pure Python. Inspired by Andrej Kar

Kenny Song 76 Sep 12, 2022
Code in conjunction with the publication 'Contrastive Representation Learning for Hand Shape Estimation'

HanCo Dataset & Contrastive Representation Learning for Hand Shape Estimation Code in conjunction with the publication: Contrastive Representation Lea

Computer Vision Group, Albert-Ludwigs-Universität Freiburg 38 Dec 13, 2022
Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit

CNTK Chat Windows build status Linux build status The Microsoft Cognitive Toolkit (https://cntk.ai) is a unified deep learning toolkit that describes

Microsoft 17.3k Dec 29, 2022
NaijaSenti is an open-source sentiment and emotion corpora for four major Nigerian languages

NaijaSenti is an open-source sentiment and emotion corpora for four major Nigerian languages. This project was supported by lacuna-fund initiatives. Jump straight to one of the sections below, or jus

Hausa Natural Language Processing 14 Dec 20, 2022
An addernet CUDA version

Training addernet accelerated by CUDA Usage cd adder_cuda python setup.py install cd .. python main.py Environment pytorch 1.10.0 CUDA 11.3 benchmark

LingXY 4 Jun 20, 2022
BASH - Biomechanical Animated Skinned Human

We developed a method animating a statistical 3D human model for biomechanical analysis to increase accessibility for non-experts, like patients, athletes, or designers.

Machine Learning and Data Analytics Lab FAU 66 Nov 19, 2022
Little tool in python to watch anime from the terminal (the better way to watch anime)

ani-cli Script working again :), thanks to the fork by Dink4n for the alternative approach to by pass the captcha on gogoanime A cli to browse and wat

Harshith 4.5k Dec 31, 2022
Predicting path with preference based on user demonstration using Maximum Entropy Deep Inverse Reinforcement Learning in a continuous environment

Preference-Planning-Deep-IRL Introduction Check my portfolio post Dependencies Gym stable-baselines3 PyTorch Usage Take Demonstration python3 record.

Tianyu Li 9 Oct 26, 2022
RCD: Relation Map Driven Cognitive Diagnosis for Intelligent Education Systems

RCD: Relation Map Driven Cognitive Diagnosis for Intelligent Education Systems This is our implementation for the paper: Weibo Gao, Qi Liu*, Zhenya Hu

BigData Lab @USTC 中科大大数据实验室 10 Oct 16, 2022
Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal Action Localization' (ICCV-21 Oral)

Learning-Action-Completeness-from-Points Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal A

Pilhyeon Lee 67 Jan 03, 2023
A fuzzing framework for SMT solvers

yinyang A fuzzing framework for SMT solvers. Given a set of seed SMT formulas, yinyang generates mutant formulas to stress-test SMT solvers. yinyang c

Project Yin-Yang for SMT Solver Testing 145 Jan 04, 2023
An official implementation of "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation" (CVPR 2021) in PyTorch.

BANA This is the implementation of the paper "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation". For more inf

CV Lab @ Yonsei University 59 Dec 12, 2022
YOLOv5 detection interface - PyQt5 implementation

所有代码已上传,直接clone后,运行yolo_win.py即可开启界面。 2021/9/29:加入置信度选择 界面是在ultralytics的yolov5基础上建立的,界面使用pyqt5实现,内容较简单,娱乐而已。 功能: 模型选择 本地文件选择(视频图片均可) 开关摄像头

487 Dec 27, 2022