Research code for the paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual Language Models"

Related tags

Deep Learninghgiyt
Overview

Introduction

This repository contains research code for the ACL 2021 paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual Language Models". Feel free to use this code to re-run our experiments or run new experiments on your own data.

Setup

General  
  1. Clone this repo
git clone [email protected]:Adapter-Hub/hgiyt.git
  1. Install PyTorch (we used v1.7.1 - code may not work as expected for older or newer versions) in a new Python (>=3.6) virtual environment
pip install torch===1.7.1+cu110 -f https://download.pytorch.org/whl/torch_stable.html
  1. Initialize the submodules
git submodule update --init --recursive
  1. Install the adapter-transformer library and dependencies
pip install lib/adapter-transformers
pip install -r requirements.txt
Pretraining  
  1. Install Nvidia Apex for automatic mixed-precision (amp / fp16) training
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
  1. Install wiki-bert-pipeline dependencies
pip install -r lib/wiki-bert-pipeline/requirements.txt
Language-specific prerequisites  

To use the Japanese monolingual model, install the morphological parser MeCab with the mecab-ipadic-20070801 dictionary:

  1. Install gdown for easy downloads from Google Drive
pip install gdown
  1. Download and install MeCab
gdown https://drive.google.com/uc?id=0B4y35FiV1wh7cENtOXlicTFaRUE
tar -xvzf mecab-0.996.tar.gz
cd mecab-0.996
./configure 
make
make check
sudo make install
  1. Download and install the mecab-ipadic-20070801 dictionary
gdown https://drive.google.com/uc?id=0B4y35FiV1wh7MWVlSDBCSXZMTXM
tar -xvzf mecab-ipadic-2.7.0-20070801.tar.gz
cd mecab-ipadic-2.7.0-20070801
./configure --with-charset=utf8
make
sudo make install

Data

We unfortunately cannot host the datasets used in our paper in this repo. However, we provide download links (wherever possible) and instructions or scripts to preprocess the data for finetuning and for pretraining.

Experiments

Our scripts are largely borrowed from the transformers and adapter-transformers libraries. For pretrained models and adapters we rely on the ModelHub and AdapterHub. However, even if you haven't used them before, running our scripts should be pretty straightforward :).

We provide instructions on how to execute our finetuning scripts here and our pretraining script here.

Models

Our pretrained models are also available in the ModelHub: https://huggingface.co/hgiyt. Feel free to finetune them with our scripts or use them in your own code.

Citation & Authors

@inproceedings{rust-etal-2021-good,
      title     = {How Good is Your Tokenizer? On the Monolingual Performance of Multilingual Language Models}, 
      author    = {Phillip Rust and Jonas Pfeiffer and Ivan Vuli{\'c} and Sebastian Ruder and Iryna Gurevych},
      year      = {2021},
      booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational
                  Linguistics, {ACL} 2021, Online, August 1-6, 2021},
      url       = {https://arxiv.org/abs/2012.15613},
      pages     = {3118--3135}
}

Contact Person: Phillip Rust, [email protected]

Don't hesitate to send us an e-mail or report an issue if something is broken (and it shouldn't be) or if you have further questions.

This repository contains experimental software and is published for the sole purpose of giving additional background details on the respective publication.

Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intelligent Systems Lab Org 1.3k Jan 02, 2023
Toolchain to build Yoshi's Island from source code

Project-Y Toolchain to build Yoshi's Island (J) V1.0 from source code, by MrL314 Last updated: September 17, 2021 Setup To begin, download this toolch

MrL314 19 Apr 18, 2022
git《FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding》(CVPR 2021) GitHub: [fig8]

FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding (CVPR 2021) This repo contains the implementation of our state-of-the-art fewshot ob

233 Dec 29, 2022
Plover-tapey-tape: an alternative to Plover’s built-in paper tape

plover-tapey-tape plover-tapey-tape is an alternative to Plover’s built-in paper

7 May 29, 2022
Code for our ICASSP 2021 paper: SA-Net: Shuffle Attention for Deep Convolutional Neural Networks

SA-Net: Shuffle Attention for Deep Convolutional Neural Networks (paper) By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software T

Qing-Long Zhang 199 Jan 08, 2023
Text-to-SQL in the Wild: A Naturally-Occurring Dataset Based on Stack Exchange Data

SEDE SEDE (Stack Exchange Data Explorer) is new dataset for Text-to-SQL tasks with more than 12,000 SQL queries and their natural language description

Rupert. 83 Nov 11, 2022
This project aims to explore the deployment of Swin-Transformer based on TensorRT, including the test results of FP16 and INT8.

Swin Transformer This project aims to explore the deployment of SwinTransformer based on TensorRT, including the test results of FP16 and INT8. Introd

maggiez 87 Dec 21, 2022
MonoScene: Monocular 3D Semantic Scene Completion

MonoScene: Monocular 3D Semantic Scene Completion MonoScene: Monocular 3D Semantic Scene Completion] [arXiv + supp] | [Project page] Anh-Quan Cao, Rao

298 Jan 08, 2023
Implementing Vision Transformer (ViT) in PyTorch

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

2 Dec 24, 2021
HAT: Hierarchical Aggregation Transformers for Person Re-identification

HAT: Hierarchical Aggregation Transformers for Person Re-identification

11 Sep 05, 2022
"SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image", Dejia Xu, Yifan Jiang, Peihao Wang, Zhiwen Fan, Humphrey Shi, Zhangyang Wang

SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image [Paper] [Website] Pipeline Code Environment pip install -r requirements

VITA 250 Jan 05, 2023
A demo of how to use JAX to create a simple gravity simulation

JAX Gravity This repo contains a demo of how to use JAX to create a simple gravity simulation. It uses JAX's experimental ode package to solve the dif

Cristian Garcia 16 Sep 22, 2022
3D Generative Adversarial Network

Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling This repository contains pre-trained models and sampling

Chengkai Zhang 791 Dec 20, 2022
The source codes for ACL 2021 paper 'BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data'

BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data This repository provides the implementation details for

124 Dec 27, 2022
An implementation of RetinaNet in PyTorch.

RetinaNet An implementation of RetinaNet in PyTorch. Installation Training COCO 2017 Pascal VOC Custom Dataset Evaluation Todo Credits Installation In

Conner Vercellino 297 Jan 04, 2023
Detectron2 is FAIR's next-generation platform for object detection and segmentation.

Detectron2 is Facebook AI Research's next generation software system that implements state-of-the-art object detection algorithms. It is a ground-up r

Facebook Research 23.3k Jan 08, 2023
A PyTorch Library for Accelerating 3D Deep Learning Research

Kaolin: A Pytorch Library for Accelerating 3D Deep Learning Research Overview NVIDIA Kaolin library provides a PyTorch API for working with a variety

NVIDIA GameWorks 3.5k Jan 07, 2023
Huawei Hackathon 2021 - Sweden (Stockholm)

huawei-hackathon-2021 Contributors DrakeAxelrod Challenge Requirements: python=3.8.10 Standard libraries (no importing) Important factors: Data depend

Drake Axelrod 32 Nov 08, 2022
I3-master-layout - Simple master and stack layout script

Simple master and stack layout script | ------ | ----- | | | | | Ma

Tobias S 18 Dec 05, 2022
[CoRL 21'] TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view Stereo

TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view Stereo Lukas Koestler1*    Nan Yang1,2*,†    Niclas Zeller2,3    Daniel Cremers1

TUM Computer Vision Group 744 Jan 04, 2023