Improving Non-autoregressive Generation with Mixup Training

Related tags

Deep LearningMIST
Overview

MIST

Training MIST

TRAIN_FILE=/your/path/to/train.json
VALID_FILE=/your/path/to/valid.json
OUTPUT_DIR=/your/path/to/save_checkpoints
CACHE_DIR=/your/path/to/transformer_package_cache

MODEL_PATH=bert-base-uncased or models/unilm1.2-base-uncased

# squadqg 30005 steps
# squadqg 50005 steps
# xsum 600005 steps
STEPS=30005

python -m torch.distributed.launch --nproc_per_node=4 train.py\
  --train_file $TRAIN_FILE\
  --valid_file $VALID_FILE\
  --output_dir $OUTPUT_PATH\
  --model_type nat --model_name_or_path $MODEL_PATH\
  --do_lower_case --max_source_seq_length 464 --max_target_seq_length 48\
  --per_gpu_train_batch_size 16 --gradient_accumulation_steps 1\
  --learning_rate 3e-5 --num_warmup_steps 500 --num_training_steps $STEPS\
  --cache_dir $CACHE_DIR\
  --log_dir ${OUTPUT_PATH}/log\
  --keep_prob 0.0\
  --random_prob 0.0\
  --use_glat\
  --tqdm_miniters 100\
  --cotrain_put_target_in_source\ 
  --cotrain_put_target_in_source_same_bert\ 
  --wandb\ # logging with wandb
  --fp16\
  --fp16_opt_level O2

Removing the cotrain_put_target_in_source and cotrain_put_target_in_source_same_bert flags to reproduce the results without MIST.

Download Unilm

mkdir -p models/unilm1.2-base-uncased
cd models/unilm1.2-base-uncased
wget https://unilm.blob.core.windows.net/ckpt/unilm1.2-base-uncased.bin -O pytorch_model.bin
wget https://unilm.blob.core.windows.net/ckpt/unilm1.2-base-uncased-vocab.txt -O vocab.txt
wget https://unilm.blob.core.windows.net/ckpt/unilm1.2-base-uncased-config.json -O config.json

Download datasets

Json dataset links: squadqg, xsum and quora

Training NAT MASS

To reproduce the results of NAT MASS, please refer to the ./MASS-NAT/mass-nat.sh

code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology"

GIANT Code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology" https://arxiv.org/pdf/2004.02118.pdf Please cite our paper if this pr

Excalibur 39 Dec 29, 2022
Torchyolo - Yolov3 ve Yolov4 modellerin Pytorch uygulamasıdır

TORCHYOLO : Yolo Modellerin Pytorch Uygulaması Yapılacaklar: Yolov3 model.py ve

Kadir Nar 3 Aug 22, 2022
A comprehensive and up-to-date developer education platform for Urbit.

curriculum A comprehensive and up-to-date developer education platform for Urbit. This project organizes developer capabilities into a hierarchy of co

Sigilante 36 Oct 04, 2022
Rethinking Nearest Neighbors for Visual Classification

Rethinking Nearest Neighbors for Visual Classification arXiv Environment settings Check out scripts/env_setup.sh Setup data Download the following fin

Menglin Jia 29 Oct 11, 2022
Auto-updating data to assist in investment to NEPSE

Symbol Ratios Summary Sector LTP Undervalued Bonus % MEGA Strong Commercial Banks 368 5 10 JBBL Strong Development Banks 568 5 10 SIFC Strong Finance

Amit Chaudhary 16 Nov 01, 2022
PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

DLR-RM 4.7k Jan 01, 2023
The Ludii general game system, developed as part of the ERC-funded Digital Ludeme Project.

The Ludii General Game System Ludii is a general game system being developed as part of the ERC-funded Digital Ludeme Project (DLP). This repository h

Digital Ludeme Project 50 Jan 04, 2023
Artificial Intelligence playing minesweeper 🤖

AI playing Minesweeper ✨ Minesweeper is a single-player puzzle video game. The objective of the game is to clear a rectangular board containing hidden

Vaibhaw 8 Oct 17, 2022
The first dataset on shadow generation for the foreground object in real-world scenes.

Object-Shadow-Generation-Dataset-DESOBA Object Shadow Generation is to deal with the shadow inconsistency between the foreground object and the backgr

BCMI 105 Dec 30, 2022
Discerning Decision-Making Process of Deep Neural Networks with Hierarchical Voting Transformation

Configurations Change HOME_PATH in CONFIG.py as the current path Data Prepare CENSINCOME Download data Put census-income.data and census-income.test i

2 Aug 14, 2022
Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition

Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition The official code of ABINet (CVPR 2021, Oral).

334 Dec 31, 2022
Convnext-tf - Unofficial tensorflow keras implementation of ConvNeXt

ConvNeXt Tensorflow This is unofficial tensorflow keras implementation of ConvNe

29 Oct 06, 2022
UDP++ (ECCVW 2020 Oral), (Winner of COCO 2020 Keypoint Challenge).

UDP-Pose This is the pytorch implementation for UDP++, which won the Fisrt place in COCO Keypoint Challenge at ECCV 2020 Workshop. Top-Down Results on

20 Jul 29, 2022
Code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition"

SEW (Squeezed and Efficient Wav2vec) The repo contains the code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speec

ASAPP Research 67 Dec 01, 2022
Yolo Traffic Light Detection With Python

Yolo-Traffic-Light-Detection This project is based on detecting the Traffic light. Pretained data is used. This application entertained both real time

Ananta Raj Pant 2 Aug 08, 2022
Codebase to experiment with a hybrid Transformer that combines conditional sequence generation with regression

Regression Transformer Codebase to experiment with a hybrid Transformer that combines conditional sequence generation with regression . Development se

International Business Machines 27 Jan 05, 2023
PyTorch Kafka Dataset: A definition of a dataset to get training data from Kafka.

PyTorch Kafka Dataset: A definition of a dataset to get training data from Kafka.

ERTIS Research Group 7 Aug 01, 2022
Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction".

GNN_PPI Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction". Lear

Ursa Zrimsek 2 Dec 14, 2022
Augmented CLIP - Training simple models to predict CLIP image embeddings from text embeddings, and vice versa.

Train aug_clip against laion400m-embeddings found here: https://laion.ai/laion-400-open-dataset/ - note that this used the base ViT-B/32 CLIP model. S

Peter Baylies 55 Sep 13, 2022
Replication Package for AequeVox:Automated Fariness Testing for Speech Recognition Systems

AequeVox Replication Package for AequeVox:Automated Fariness Testing for Speech Recognition Systems README under development. Python Packages Required

Sai Sathiesh 2 Aug 28, 2022