This is the official implementation code repository of Underwater Light Field Retention : Neural Rendering for Underwater Imaging (Accepted by CVPR Workshop2022 NTIRE)

Related tags

Deep LearningUWNR
Overview

Underwater Light Field Retention : Neural Rendering for Underwater Imaging (UWNR) (Accepted by CVPR Workshop2022 NTIRE)

Authors: Tian Ye, Sixiang Chen, Yun Liu, Erkang Chen*, Yi Ye, Yuche Li

  •  represents equal contributions.
  • *  represents corresponding author.

Paper DownloadCode Download

Abstract: Underwater Image Rendering aims to generate a true-tolife underwater image from a given clean one, which could be applied to various practical applications such as underwater image enhancement, camera filter, and virtual gaming. We explore two less-touched but challenging problems in underwater image rendering, namely, i) how to render diverse underwater scenes by a single neural network? ii) how to adaptively learn the underwater light fields from natural exemplars, i,e., realistic underwater images? To this end, we propose a neural rendering method for underwater imaging, dubbed UWNR (Underwater Neural Rendering). Specifically, UWNR is a data-driven neural network that implicitly learns the natural degenerated model from authentic underwater images, avoiding introducing erroneous biases by hand-craft imaging models. 
   Compared with existing underwater image generation methods, UWNR utilizes the natural light field to simulate the main characteristics ofthe underwater scene. Thus, it is able to synthesize a wide variety ofunderwater images from one clean image with various realistic underwater images.  
   Extensive experiments demonstrate that our approach achieves better visual effects and quantitative metrics over previous methods. Moreover, we adopt UWNR to build an open Large Neural Rendering Underwater Dataset containing various types ofwater quality, dubbed LNRUD.

Experiment Environment

  • python3
  • Pytorch 1.9.0
  • Numpy 1.19.5
  • Opencv 4.5.5.62
  • NVDIA 2080TI GPU + CUDA 11.4
  • NVIDIA Apex 0.1
  • tensorboardX(optional)

Large Neural Rendering Underwater Dataset (LNRUD)

The LNRUD generated by our Neural Rendering architecture can be downloaded from LNRUD   Password:djhh , which contains 50000 clean images and 50000 underwater images synthesized from 5000 real underwater scene images.

Training Stage

All datasets can be downloaded, including UIEB, NYU, RESIDE and SUID

Train with the DDP mode under Apex 0.1 and Pytorch1.9.0

Put clean images in clean_img_path.

Put depth images in depth_img_path.

Put real underwater images as training ground-truth in underwater_path.

Put real underwater images as FID_gt in fid_gt_path.

Run the following commands:

python3  -m torch.distributed.launch --master_port 42563 --nproc_per_node 2 train_ddp.py --resume=True --clean_img_path clean_img_path --depth_img_path depth_img_path --underwater_path underwater_path --fid_gt_path fid_gt_path --model_name UWNR

Generating Stage

You can download pre-trained model from Pre-trained model   Password:42w9 and save it in model_path. The Depth Net refers to MegaDepth and we use the depth pre-trained model   Password:mzqa from them.

Run the following commands:

python3  test.py --clean_img_path clean_img_path --depth_img_path depth_img_path --underwater_path underwater_path --fid_gt_path fid_gt_path --model_path model_path 

The rusults are saved in ./out/

Correction

The computation and inferencing runtime of rendering is 138.13GMac/0.026s when the image size is 1024×1024.

Citation

@article{ye2022underwater,
  title={Underwater Light Field Retention: Neural Rendering for Underwater Imaging},
  author={Ye, Tian and Chen, Sixiang and Liu, Yun and Chen, Erkang and Ye, Yi and Li, Yuche},
  journal={arXiv preprint arXiv:2203.11006},
  year={2022}
}

If you have any questions, please contact the email [email protected] or [email protected]

Owner
jmucsx
jmucsx
Teaches a student network from the knowledge obtained via training of a larger teacher network

Distilling-the-knowledge-in-neural-network Teaches a student network from the knowledge obtained via training of a larger teacher network This is an i

Abhishek Sinha 146 Dec 11, 2022
Generating Images with Recurrent Adversarial Networks

Generating Images with Recurrent Adversarial Networks Python (Theano) implementation of Generating Images with Recurrent Adversarial Networks code pro

Daniel Jiwoong Im 121 Sep 08, 2022
🥈78th place in Riiid Answer Correctness Prediction competition

Riiid Answer Correctness Prediction Introduction This repository is the code that placed 78th in Riiid Answer Correctness Prediction competition. Requ

Jungwoo Park 10 Jul 14, 2022
Codebase for the self-supervised goal reaching benchmark introduced in the LEXA paper

LEXA Benchmark Codebase for the self-supervised goal reaching benchmark introduced in the LEXA paper (Discovering and Achieving Goals via World Models

Oleg Rybkin 36 Dec 22, 2022
Official repository for "Restormer: Efficient Transformer for High-Resolution Image Restoration". SOTA for motion deblurring, image deraining, denoising (Gaussian/real data), and defocus deblurring.

Restormer: Efficient Transformer for High-Resolution Image Restoration Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan,

Syed Waqas Zamir 906 Dec 30, 2022
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang News 2021.12.5 Release Deep

145 Jan 05, 2023
Code for our ALiBi method for transformer language models.

Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation This repository contains the code and models for our paper Tra

Ofir Press 211 Dec 31, 2022
CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer

CSAW-M This repository contains code for CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer. Source code for tr

Yue Liu 7 Oct 11, 2022
Text Generation by Learning from Demonstrations

Text Generation by Learning from Demonstrations The README was last updated on March 7, 2021. The repo is based on fairseq (v0.9.?). Paper arXiv Prere

38 Oct 21, 2022
Codes for NAACL 2021 Paper "Unsupervised Multi-hop Question Answering by Question Generation"

Unsupervised-Multi-hop-QA This repository contains code and models for the paper: Unsupervised Multi-hop Question Answering by Question Generation (NA

Liangming Pan 70 Nov 27, 2022
Python with OpenCV - MediaPip Framework Hand Detection

Python HandDetection Python with OpenCV - MediaPip Framework Hand Detection Explore the docs » Contact Me About The Project It is a Computer vision pa

2 Jan 07, 2022
A tool to visualise the results of AlphaFold2 and inspect the quality of structural predictions

AlphaFold Analyser This program produces high quality visualisations of predicted structures produced by AlphaFold. These visualisations allow the use

Oliver Powell 3 Nov 13, 2022
Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning

isvd Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning If you find this code useful, you may cite us as: @inprocee

Sami Abu-El-Haija 16 Jan 08, 2023
2021 Artificial Intelligence Diabetes Datathon

A.I.D.D. 2021 2021 Artificial Intelligence Diabetes Datathon A.I.D.D. 2021은 ‘2021 인공지능 학습용 데이터 구축사업’을 통해 만들어진 학습용 데이터를 활용하여 당뇨병을 효과적으로 예측할 수 있는가에 대한 A

2 Dec 27, 2021
Using multidimensional LSTM neural networks to create a forecast for Bitcoin price

Multidimensional LSTM BitCoin Time Series Using multidimensional LSTM neural networks to create a forecast for Bitcoin price. For notes around this co

Jakob Aungiers 318 Dec 14, 2022
Multi-Content GAN for Few-Shot Font Style Transfer at CVPR 2018

MC-GAN in PyTorch This is the implementation of the Multi-Content GAN for Few-Shot Font Style Transfer. The code was written by Samaneh Azadi. If you

Samaneh Azadi 422 Dec 04, 2022
Face2webtoon - Despite its importance, there are few previous works applying I2I translation to webtoon.

Despite its importance, there are few previous works applying I2I translation to webtoon. I collected dataset from naver webtoon 연애혁명 and tried to transfer human faces to webtoon domain.

이상윤 64 Oct 19, 2022
HybridNets: End-to-End Perception Network

HybridNets: End2End Perception Network HybridNets Network Architecture. HybridNets: End-to-End Perception Network by Dat Vu, Bao Ngo, Hung Phan 📧 FPT

Thanh Dat Vu 370 Dec 29, 2022
A voice recognition assistant similar to amazon alexa, siri and google assistant.

kenyan-Siri Build an Artificial Assistant Full tutorial (video) To watch the tutorial, click on the image below Installation For windows users (run th

Alison Parker 3 Aug 19, 2022
JudeasRx - graphical app for doing personalized causal medicine using the methods invented by Judea Pearl et al.

JudeasRX Instructions Read the references given in the Theory and Notation section below Fire up the Jupyter Notebook judeas-rx.ipynb The notebook dra

Robert R. Tucci 19 Nov 07, 2022