Stacked Hourglass Network with a Multi-level Attention Mechanism: Where to Look for Intervertebral Disc Labeling

Overview

⚠️ ‎‎‎ A more recent and actively-maintained version of this code is available in ivadomed

Stacked Hourglass Network with a Multi-level Attention Mechanism: Where to Look for Intervertebral Disc Labeling

Automatic labeling of the intervertebral disc is a difficult task, due to the many challenges such as complex background, the similarity between discs and bone area in MRI imaging, blurry image, and variation in an imaging modality. Precisely localizing spinal discs plays an important role in intervertebral disc labeling. Most of the literature work consider the semantic intervertebral disc labeling as a post-processing step, which applies on the top of the disc localization algorithm. Hence, the semantic intervertebral labeling highly depends on the disc localization algorithm and mostly fails when the localization algorithm cannot detect discs or falsely detects a background area as a disc. In this work, we aimed to mitigate this problem by reformulating the semantic intervertebral disc labeling using the pose estimation technique. If this code helps with your research please consider citing the following papers:

R. Azad, Lucas Rouhier, and Julien Cohen-Adad "Stacked Hourglass Network with a Multi-level Attention Mechanism: Where to Look for Intervertebral Disc Labeling", MICCAI Workshop, 2021, download link.

Please consider starring us, if you found it useful. Thanks

Updates

  • 11-8-2021: Source code is available.

Prerequisties and Run

This code has been implemented in python language using Pytorch libarary and tested in ubuntu, though should be compatible with related environment. The required libraries are included in the requiremetns.txt file. Please follow the bellow steps to train and evaluate the model.

1- Download the Spine Generic Public Database (Multi-Subject).
2- Run the create_dataset.py to gather the required data from the Spin Generic dataset.
4- Run prepare_trainset.py to creat the training and validation samples.
Notice: To avoid the above steps we have provided the processed data for all train, validation and test sets here (should be around 150 MB) you can simply download it and continue with the rest steps.
5- Run the main.py to train and evaluate the model. Use the following command with the related arguments to perform the required action:
A- Train and evaluate the model python src/main.py. You can use --att true to use the attention mechanisim.
B- Evaluate the model python src/main.py --evaluate true it will load the trained model and evalute it on the validation set.
C- You can run make_res_gif.py to creat a prediction video using the prediction images generated by main.py for the validation set.
D- You can change the number of stacked hourglass by --stacks argument. For more details check the arguments section in main.py.
6- Run the test.py to evaluate the model on the test set alongside with the metrics.

Quick Overview

Diagram of the proposed method

Visualzie the attention channel

To extract and show the attention channel for the related input sample, we registered the attention channel by the forward hook. Thus with the following command, you can visualize the input sample, estimated vertebral disc location, and the attention channel.
python src/main.py --evaluate true --attshow true .

Attention visualization

Sample of detection result on the test set

Below we illustrated a sample of vertebral disc detection on the test set.

Test sample

Model weights

You can download the learned weights for each modality in the following table.

Method Modality Learned weights
Proposed model without attention T1w download
Proposed model without attention T2w download
Proposed model with attention T1w download
Proposed model with attention T2w download
Owner
Reza Azad
Deep Learning and Computer Vision Researcher
Reza Azad
Colar: Effective and Efficient Online Action Detection by Consulting Exemplars, CVPR 2022.

Colar: Effective and Efficient Online Action Detection by Consulting Exemplars This repository is the official implementation of Colar. In this work,

LeYang 246 Dec 13, 2022
Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)

Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt) Task Training huge unsupervised deep neural networks yields to strong progress in

Oliver Hahn 1 Jan 26, 2022
A working implementation of the Categorical DQN (Distributional RL).

Categorical DQN. Implementation of the Categorical DQN as described in A distributional Perspective on Reinforcement Learning. Thanks to @tudor-berari

Florin Gogianu 98 Sep 20, 2022
Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification

Less is More: Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification Suncheng Xiang Shanghai Jiao Tong University Over

SunchengXiang 68 Dec 13, 2022
A curated list of Generative Deep Art projects, tools, artworks, and models

Generative Deep Art A curated list of Generative Deep Art projects, tools, artworks, and models Inbox Get started with making AI art in 2022 – deeplea

Filipe Calegario 251 Jan 03, 2023
Official Code Implementation of the paper : XAI for Transformers: Better Explanations through Conservative Propagation

Official Code Implementation of The Paper : XAI for Transformers: Better Explanations through Conservative Propagation For the SST-2 and IMDB expermin

Ameen Ali 23 Dec 30, 2022
ReConsider is a re-ranking model that re-ranks the top-K (passage, answer-span) predictions of an Open-Domain QA Model like DPR (Karpukhin et al., 2020).

ReConsider ReConsider is a re-ranking model that re-ranks the top-K (passage, answer-span) predictions of an Open-Domain QA Model like DPR (Karpukhin

Facebook Research 47 Jul 26, 2022
[CVPR 2021] Unsupervised 3D Shape Completion through GAN Inversion

ShapeInversion Paper Junzhe Zhang, Xinyi Chen, Zhongang Cai, Liang Pan, Haiyu Zhao, Shuai Yi, Chai Kiat Yeo, Bo Dai, Chen Change Loy "Unsupervised 3D

100 Dec 22, 2022
[ICML 2020] "When Does Self-Supervision Help Graph Convolutional Networks?" by Yuning You, Tianlong Chen, Zhangyang Wang, Yang Shen

When Does Self-Supervision Help Graph Convolutional Networks? PyTorch implementation for When Does Self-Supervision Help Graph Convolutional Networks?

Shen Lab at Texas A&M University 106 Nov 11, 2022
Running Google MoveNet Multipose Tracking models on OpenVINO.

MoveNet MultiPose Tracking on OpenVINO

60 Nov 17, 2022
Denoising Normalizing Flow

Denoising Normalizing Flow Christian Horvat and Jean-Pascal Pfister 2021 We combine Normalizing Flows (NFs) and Denoising Auto Encoder (DAE) by introd

CHrvt 17 Oct 15, 2022
Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder

RAVE: Realtime Audio Variational autoEncoder Official implementation of RAVE: A variational autoencoder for fast and high-quality neural audio synthes

ACIDS 587 Jan 01, 2023
Explaining in Style: Training a GAN to explain a classifier in StyleSpace

Explaining in Style: Official TensorFlow Colab Explaining in Style: Training a GAN to explain a classifier in StyleSpace Oran Lang, Yossi Gandelsman,

Google 197 Nov 08, 2022
Live Hand Tracking Using Python

Live-Hand-Tracking-Using-Python Project Description: In this project, we will be

Hassan Shahzad 2 Jan 06, 2022
A simple algorithm for extracting tree height in sparse scene from point cloud data.

TREE HEIGHT EXTRACTION IN SPARSE SCENES BASED ON UAV REMOTE SENSING This is the offical python implementation of the paper "Tree Height Extraction in

6 Oct 28, 2022
Automatic deep learning for image classification.

AutoDL AutoDL automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few line

wenqi 2 Oct 12, 2022
An introduction to satellite image analysis using Python + OpenCV and JavaScript + Google Earth Engine

A Gentle Introduction to Satellite Image Processing Welcome to this introductory course on Satellite Image Analysis! Satellite imagery has become a pr

Edward Oughton 32 Jan 03, 2023
This project intends to use SVM supervised learning to determine whether or not an individual is diabetic given certain attributes.

Diabetes Prediction Using SVM I explore a diabetes prediction algorithm using a Diabetes dataset. Using a Support Vector Machine for my prediction alg

Jeff Shen 1 Jan 14, 2022
Distilled coarse part of LoFTR adapted for compatibility with TensorRT and embedded divices

Coarse LoFTR TRT Google Colab demo notebook This project provides a deep learning model for the Local Feature Matching for two images that can be used

Kirill 46 Dec 24, 2022
tensorflow code for inverse face rendering

InverseFaceRender This is tensorflow code for our project: Learning Inverse Rendering of Faces from Real-world Videos. (https://arxiv.org/abs/2003.120

Yuda Qiu 18 Nov 16, 2022