Julia package for contraction of tensor networks, based on the sweep line algorithm outlined in the paper General tensor network decoding of 2D Pauli codes

Overview

SweepContractor.jl

A Julia package for the contraction of tensor networks using the sweep-line-based contraction algorithm laid out in the paper General tensor network decoding of 2D Pauli codes. This algorithm is primarily designed for two-dimensional tensor networks but contains graph manipulation tools that allow it to function for generic tensor networks.

Sweep-line anim

Below I have provided some examples of SweepContractor.jl at work. Scripts with working versions of each of these examples are also included in the package. For more detailed documentation consult help pages by using ? in the Julia REPL.

Feel free to contact me with any comments, questions, or suggestions at [email protected]. If you use SweepContractor.jl for research, please cite either arXiv:2101.04125 and/or doi:10.5281/zenodo.5566841.

Example 1: ABCD

Consider the following four tensor networks, taken from the tensor network review Hand-waving and Interpretive Dance:

ABCD1,

where each tensor is defined

ABCD2

First we need to install SweepContract.jl, which we do by running

import Pkg
Pkg.add("SweepContractor")

Now that it's installed we can use the package by running

using SweepContractor

Next we need to define our network. We do this by initialising a LabelledTensorNetwork, which allows us to have a tensor network with elements labelled by an arbitrary type, in our case Char.

LTN = LabelledTensorNetwork{Char}()

Next, we populate this with our four tensors, which are each specified by giving a list of neighbouring tensors, an array consisting of the entries, and a two-dimensional location.

LTN['A'] = Tensor(['D','B'], [i^2-2j for i=0:2, j=0:2], 0, 1)
LTN['B'] = Tensor(['A','D','C'], [-3^i*j+k for i=0:2, j=0:2, k=0:2], 0, 0)
LTN['C'] = Tensor(['B','D'], [j for i=0:2, j=0:2], 1, 0)
LTN['D'] = Tensor(['A','B','C'], [i*j*k for i=0:2, j=0:2, k=0:2], 1, 1)

Finally, we want to contract this network. To do this we need to specify a target bond dimension and a maximum bond-dimension. In our case, we will use 2 and 4.

value = sweep_contract(LTN,2,4)

To avoid underflows or overflows in the case of large networks sweep_contract does not simply return a float, but returns (f::Float64,i::Int64), which represents a valuef*2^i. In this case, it returns (1.0546875, 10). By running ldexp(sweep...) we can see that this corresponds to the exact value of the network of 1080.

Note there are two speedups that can be made to this code. Firstly, sweep_contract copies the input tensor network, so we can use the form sweep_contract! which allows the function to modify the input tensor network, skipping this copy step. Secondly, sweep_contract is designed to function on arbitrary tensor networks, and starts by flattening the network down into two dimensions. If our network is already well-structured, we can run the contraction in fast mode skipping these steps.

value = sweep_contract!(LTN,2,4; fast=true)

Examples 2: 2d grid (open)

Next, we move on to the sort of network this code was primarily designed for, a two-dimensional network. Here consider an square grid network of linear size L, with each index of dimension d. For convenience, we can once again use a LabelledTensorNetwork, with labels in this case corresponding to coordinates in the grid. To construct such a network with Gaussian random entries we can use code such as:

LTN = LabelledTensorNetwork{Tuple{Int,Int}}();
for i1:L, j1:L
    adj=Tuple{Int,Int}[];
    i>1 && push!(adj,(i-1,j))
    j>1 && push!(adj,(i,j-1))
    i<L && push!(adj,(i+1,j))
    j<L && push!(adj,(i,j+1))
    LTN[i,j] = Tensor(adj, randn(d*ones(Int,length(adj))...), i, j)
end

We note that the if statements used have the function of imposing open boundary conditions. Once again we can now contract this by running the sweep contractor (in fast mode), for some choice of bond-dimensions χ and τ:

value = sweep_contract!(LTN,χ,τ; fast=true)

Example 3: 2d grid (periodic)

But what about contracting a 2d grid with periodic boundary conditions? Well, this contains a small number of long-range bonds. Thankfully, however SweepContractor.jl can run on such graphs by first planarising them.

We might start by taking the above code and directly changing the boundary conditions, but this will result in the boundary edges overlapping other edges in the network (e.g. the edge from (1,1) to (2,1) will overlap the edge from (1,1) to (L,1)), which the contractor cannot deal with. As a crude workaround we just randomly shift the position of each tensor by a small amount:

LTN = LabelledTensorNetwork{Tuple{Int,Int}}();
for i1:L, j1:L
    adj=[
        (mod1(i-1,L),mod1(j,L)),
        (mod1(i+1,L),mod1(j,L)),
        (mod1(i,L),mod1(j-1,L)),
        (mod1(i,L),mod1(j+1,L))
    ]
    LTN[i,j] = Tensor(adj, randn(d,d,d,d), i+0.1*rand(), j+0.1*rand())
end

Here the mod1 function is imposing our periodic boundary condition, and rand() is being used to slightly move each tensor. Once again we can now run sweep_contract on this, but cannot use fast-mode as the network is no longer planar:

value = sweep_contract!(LTN,χ,τ)

Example 4: 3d lattice

If we can impose periodic boundary conditions, can we go further away from 2D? How about 3D? We sure can! For this we can just add another dimension to the above construction for a 2d grid:

LTN = LabelledTensorNetwork{Tuple{Int,Int,Int}}();
for i1:L, j1:L, k1:L
    adj=Tuple{Int,Int,Int}[];
    i>1 && push!(adj,(i-1,j,k))
    i<L && push!(adj,(i+1,j,k))
    j>1 && push!(adj,(i,j-1,k))
    j<L && push!(adj,(i,j+1,k))
    k>1 && push!(adj,(i,j,k-1))
    k<L && push!(adj,(i,j,k+1))
    LTN[i,j,k] = Tensor(
        adj,
        randn(d*ones(Int,length(adj))...),
        i+0.01*randn(),
        j+0.01*randn()
    )
end

value = sweep_contract!(LTN,χ,τ)

Example 5: Complete network

So how far can we go away from two-dimensional? The further we stray away from two-dimensional the more inefficient the contraction will be, but for small examples arbitrary connectivity is permissible. The extreme example is a completely connected network of n tensors:

TN=TensorNetwork(undef,n);
for i=1:n
    TN[i]=Tensor(
        setdiff(1:n,i),
        randn(d*ones(Int,n-1)...),
        randn(),
        randn()
    )
end

value = sweep_contract!(LTN,χ,τ)

Here we have used a TensorNetwork instead of a LabelledTensorNetwork. In a LabelledTensorNetwork each tensor can be labelled by an arbitrary type, which is accomplished by storing the network as a dictionary, which can incur significant overheads. TensorNetwork is built using vectors, which each label now needs to be labelled by an integer 1 to n, but can be significantly faster. While less flexible, TensorNetwork should be preferred in performance-sensitive settings.

You might also like...
 Pretty Tensor - Fluent Neural Networks in TensorFlow
Pretty Tensor - Fluent Neural Networks in TensorFlow

Pretty Tensor provides a high level builder API for TensorFlow. It provides thin wrappers on Tensors so that you can easily build multi-layer neural networks.

Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks

Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks This repository contains the code and data for the corresp

DI-HPC is an acceleration operator component for general algorithm modules in reinforcement learning algorithms

DI-HPC: Decision Intelligence - High Performance Computation DI-HPC is an acceleration operator component for general algorithm modules in reinforceme

PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models
PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models

This is the official implementation of the following paper: Torsten Scholak, Nathan Schucher, Dzmitry Bahdanau. PICARD - Parsing Incrementally for Con

PyTorch implementation of D2C: Diffuison-Decoding Models for Few-shot Conditional Generation.
PyTorch implementation of D2C: Diffuison-Decoding Models for Few-shot Conditional Generation.

D2C: Diffuison-Decoding Models for Few-shot Conditional Generation Project | Paper PyTorch implementation of D2C: Diffuison-Decoding Models for Few-sh

Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)
Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)

TDEER (WIP) Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021) Overview TDEER is an e

General Virtual Sketching Framework for Vector Line Art (SIGGRAPH 2021)
General Virtual Sketching Framework for Vector Line Art (SIGGRAPH 2021)

General Virtual Sketching Framework for Vector Line Art - SIGGRAPH 2021 Paper | Project Page Outline Dependencies Testing with Trained Weights Trainin

Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

Comments
  • Restructure code base and depend on DataStructures rather than copying code.

    Restructure code base and depend on DataStructures rather than copying code.

    • Organize some files in subdirectories
    • SweepContractor.jl uses a data structure copied and modified from DataStructures.jl. This PR minimizes the number of files copied and instead depends as much as possible on DataStructures.jl
    • Creates a test suite with a few tests taken from the examples.
    opened by jlapeyre 0
Releases(v0.1.7)
Owner
Christopher T. Chubb
Christopher T. Chubb
Campsite Reservation Finder

yellowstone-camping UPDATE: yellowstone-camping is being expanded and renamed to camply. The updated tool now interfaces with the Recreation.gov API a

Justin Flannery 233 Jan 08, 2023
Official repo for BMVC2021 paper ASFormer: Transformer for Action Segmentation

ASFormer: Transformer for Action Segmentation This repo provides training & inference code for BMVC 2021 paper: ASFormer: Transformer for Action Segme

42 Dec 23, 2022
This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021.

MCGC Description This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021. Datasets Results ACM DBLP IMDB Amazon photos Amazon co

31 Nov 14, 2022
This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams.

Mutli-agent task allocation This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams. To change

Biorobotics Lab 5 Oct 12, 2022
PyTorch implementation of "Conformer: Convolution-augmented Transformer for Speech Recognition" (INTERSPEECH 2020)

PyTorch implementation of Conformer: Convolution-augmented Transformer for Speech Recognition. Transformer models are good at capturing content-based

Soohwan Kim 565 Jan 04, 2023
Decision Transformer: A brand new Offline RL Pattern

DecisionTransformer_StepbyStep Intro Decision Transformer: A brand new Offline RL Pattern. 这是关于NeurIPS 2021 热门论文Decision Transformer的复现。 👍 原文地址: Deci

Irving 14 Nov 22, 2022
Monocular 3D Object Detection: An Extrinsic Parameter Free Approach (CVPR2021)

Monocular 3D Object Detection: An Extrinsic Parameter Free Approach (CVPR2021) Yunsong Zhou, Yuan He, Hongzi Zhu, Cheng Wang, Hongyang Li, Qinhong Jia

Yunsong Zhou 51 Dec 14, 2022
[CVPR 2021] Region-aware Adaptive Instance Normalization for Image Harmonization

RainNet — Official Pytorch Implementation Region-aware Adaptive Instance Normalization for Image Harmonization Jun Ling, Han Xue, Li Song*, Rong Xie,

130 Dec 11, 2022
Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression.

Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression. Not an official Google product. Me

Google Research 27 Dec 12, 2022
Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral]

Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral] Learning to Disambiguate Strongly In

Zicong Fan 40 Dec 22, 2022
Matlab Python Heuristic Battery Opt - SMOP conversion and manual conversion

SMOP is Small Matlab and Octave to Python compiler. SMOP translates matlab to py

Tom Xu 1 Jan 12, 2022
Official implementation for TTT++: When Does Self-supervised Test-time Training Fail or Thrive

TTT++ This is an official implementation for TTT++: When Does Self-supervised Test-time Training Fail or Thrive? TL;DR: Online Feature Alignment + Str

VITA lab at EPFL 39 Dec 25, 2022
PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

Saim Wani 4 May 08, 2022
Learning Super-Features for Image Retrieval

Learning Super-Features for Image Retrieval This repository contains the code for running our FIRe model presented in our ICLR'22 paper: @inproceeding

NAVER 101 Dec 28, 2022
PyTorch implementation of "Simple and Deep Graph Convolutional Networks"

Simple and Deep Graph Convolutional Networks This repository contains a PyTorch implementation of "Simple and Deep Graph Convolutional Networks".(http

chenm 253 Dec 08, 2022
Retina blood vessel segmentation with a convolutional neural network

Retina blood vessel segmentation with a convolution neural network (U-net) This repository contains the implementation of a convolutional neural netwo

Orobix 1.2k Jan 06, 2023
The full training script for Enformer (Tensorflow Sonnet) on TPU clusters

Enformer TPU training script (wip) The full training script for Enformer (Tensorflow Sonnet) on TPU clusters, in an effort to migrate the model to pyt

Phil Wang 10 Oct 19, 2022
SciPy fixes and extensions

scipyx SciPy is large library used everywhere in scientific computing. That's why breaking backwards-compatibility comes as a significant cost and is

Nico Schlömer 16 Jul 17, 2022
Single/multi view image(s) to voxel reconstruction using a recurrent neural network

3D-R2N2: 3D Recurrent Reconstruction Neural Network This repository contains the source codes for the paper Choy et al., 3D-R2N2: A Unified Approach f

Chris Choy 1.2k Dec 27, 2022
A real-time approach for mapping all human pixels of 2D RGB images to a 3D surface-based model of the body

DensePose: Dense Human Pose Estimation In The Wild Rıza Alp Güler, Natalia Neverova, Iasonas Kokkinos [densepose.org] [arXiv] [BibTeX] Dense human pos

Meta Research 6.4k Jan 01, 2023