CTC segmentation python package

Overview

CTC segmentation

CTC segmentation can be used to find utterances alignments within large audio files.

Installation

  • With pip:
pip install ctc-segmentation
  • From the Arch Linux AUR as python-ctc-segmentation-git using your favourite AUR helper.

  • From source:

git clone https://github.com/lumaku/ctc-segmentation
cd ctc-segmentation
cythonize -3 ctc_segmentation/ctc_segmentation_dyn.pyx
python setup.py build
python setup.py install --optimize=1 --skip-build

Example Code

  1. prepare_text filters characters not in the dictionary, and generates the character matrix.
  2. ctc_segmentation computes character-wise alignments from CTC activations of an already trained CTC-based network.
  3. determine_utterance_segments converts char-wise alignments to utterance-wise alignments.
  4. In a post-processing step, segments may be filtered by their confidence value.

This code is from asr_align.py of the ESPnet toolkit:

from ctc_segmentation import ctc_segmentation
from ctc_segmentation import CtcSegmentationParameters
from ctc_segmentation import determine_utterance_segments
from ctc_segmentation import prepare_text

# ...

config = CtcSegmentationParameters()
char_list = train_args.char_list

for idx, name in enumerate(js.keys(), 1):
    logging.info("(%d/%d) Aligning " + name, idx, len(js.keys()))
    batch = [(name, js[name])]
    feat, label = load_inputs_and_targets(batch)
    feat = feat[0]
    with torch.no_grad():
        # Encode input frames
        enc_output = model.encode(torch.as_tensor(feat).to(device)).unsqueeze(0)
        # Apply ctc layer to obtain log character probabilities
        lpz = model.ctc.log_softmax(enc_output)[0].cpu().numpy()
    # Prepare the text for aligning
    ground_truth_mat, utt_begin_indices = prepare_text(
        config, text[name], char_list
    )
    # Align using CTC segmentation
    timings, char_probs, state_list = ctc_segmentation(
        config, lpz, ground_truth_mat
    )
    # Obtain list of utterances with time intervals and confidence score
    segments = determine_utterance_segments(
        config, utt_begin_indices, char_probs, timings, text[name]
    )
    # Write to "segments" file
    for i, boundary in enumerate(segments):
        utt_segment = (
            f"{segment_names[name][i]} {name} {boundary[0]:.2f}"
            f" {boundary[1]:.2f} {boundary[2]:.9f}\n"
        )
        args.output.write(utt_segment)

After the segments are written to a segments file, they can be filtered with the parameter min_confidence_score. This is minium confidence score in log space as described in the paper. Utterances with a low confidence score are discarded. This parameter may need adjustment depending on dataset, ASR model and language. For the german ASR model, a value of -1.5 worked very well, but for TEDlium, a lower value of about -5.0 seemed more practical.

awk -v ms=${min_confidence_score} '{ if ($5 > ms) {print} }' ${unfiltered} > ${filtered}

Parameters

There are several notable parameters to adjust the working of the algorithm:

  • min_window_size: Minimum window size considered for a single utterance. The current default value should be OK in most cases.

  • Localization: The character set is taken from the model dict, i.e., usually are generated with SentencePiece. An ASR model trained in the corresponding language and character set is needed. For asian languages, no changes to the CTC segmentation parameters should be necessary. One exception: If the character set contains any punctuation characters, "#", or the Greek char "ε", adapt the setting in an instance of CtcSegmentationParameters in segmentation.py.

  • CtcSegmentationParameters includes a blank character. Copy over the Blank character from the dictionary to the configuration, if in the model dictionary e.g. "<blank>" instead of the default "_" is used. If the Blank in the configuration and in the dictionary mismatch, the algorithm raises an IndexError at backtracking.

  • If replace_spaces_with_blanks is True, then spaces in the ground truth sequence are replaces by blanks. This option is enabled by default and improves compability with dictionaries with unknown space characters.

  • To align utterances with longer unkown audio sections between them, use blank_transition_cost_zero (default: False). With this option, the stay transition in the blank state is free. A transition to the next character is only consumed if the probability to switch is higher. In this way, more time steps can be skipped between utterances. Caution: in combination with replace_spaces_with_blanks == True, this may lead to misaligned segments.

Two parameters are needed to correctly map the frame indices to a time stamp in seconds:

  • subsampling_factor: If the encoder sub-samples its input, the number of frames at the CTC layer is reduced by this factor. A BLSTMP encoder with subsampling 1_2_2_1_1 has a subsampling factor of 4.
  • frame_duration_ms: This is the non-overlapping duration of a single frame in milliseconds (the inverse of frames per millisecond). Note: if fs is set, then frame_duration_ms is ignored.

But not all ASR systems have subsampling. If you want to directly use the sampling rate:

  1. For a given sample rate, say, 16kHz, set fs=16000.
  2. Then set the subsampling_factor to the number of sample points on a single CTC-encoded frame. In default ASR systems, this can be calculated from the hop length of the windowing times encoder subsampling factor. For example, if the hop length is 128, and the subsampling factor in the encoder is 4, then set subsampling_factor=512.

How it works

1. Forward propagation

Character probabilites from each time step are obtained from a CTC-based network. With these, transition probabilities are mapped into a trellis diagram. To account for preambles or unrelated segments in audio files, the transition cost are set to zero for the start-of-sentence or blank token.

Forward trellis

2. Backtracking

Starting from the time step with the highest probability for the last character, backtracking determines the most probable path of characters through all time steps.

Backward path

3. Confidence score

As this method generates a probability for each aligned character, a confidence score for each utterance can be derived. For example, if a word within an utterance is missing, this value is low.

Confidence score

The confidence score helps to detect and filter-out bad utterances.

Reference

The full paper can be found in the preprint https://arxiv.org/abs/2007.09127 or published at https://doi.org/10.1007/978-3-030-60276-5_27. To cite this work:

@InProceedings{ctcsegmentation,
author="K{\"u}rzinger, Ludwig
and Winkelbauer, Dominik
and Li, Lujun
and Watzel, Tobias
and Rigoll, Gerhard",
editor="Karpov, Alexey
and Potapova, Rodmonga",
title="CTC-Segmentation of Large Corpora for German End-to-End Speech Recognition",
booktitle="Speech and Computer",
year="2020",
publisher="Springer International Publishing",
address="Cham",
pages="267--278",
abstract="Recent end-to-end Automatic Speech Recognition (ASR) systems demonstrated the ability to outperform conventional hybrid DNN/HMM ASR. Aside from architectural improvements in those systems, those models grew in terms of depth, parameters and model capacity. However, these models also require more training data to achieve comparable performance.",
isbn="978-3-030-60276-5"
}
Owner
Ludwig Kürzinger
Ludwig Kürzinger
Hybrid Neural Fusion for Full-frame Video Stabilization

FuSta: Hybrid Neural Fusion for Full-frame Video Stabilization Project Page | Video | Paper | Google Colab Setup Setup environment for [Yu and Ramamoo

Yu-Lun Liu 430 Jan 04, 2023
Code for paper "Multi-level Disentanglement Graph Neural Network"

Multi-level Disentanglement Graph Neural Network (MD-GNN) This is a PyTorch implementation of the MD-GNN, and the code includes the following modules:

Lirong Wu 6 Dec 29, 2022
The devkit of the nuScenes dataset.

nuScenes devkit Welcome to the devkit of the nuScenes and nuImages datasets. Overview Changelog Devkit setup nuImages nuImages setup Getting started w

Motional 1.6k Jan 05, 2023
CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss

CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss This is official implement of "

程星 87 Dec 24, 2022
Seeing if I can put together an interactive version of 3b1b's Manim in Streamlit

streamlit-manim Seeing if I can put together an interactive version of 3b1b's Manim in Streamlit Installation I had to install pango with sudo apt-get

Adrien Treuille 6 Aug 03, 2022
NeurIPS 2021 Datasets and Benchmarks Track

AP-10K: A Benchmark for Animal Pose Estimation in the Wild Introduction | Updates | Overview | Download | Training Code | Key Questions | License Intr

AP-10K 82 Dec 11, 2022
Improving Factual Consistency of Abstractive Text Summarization

Improving Factual Consistency of Abstractive Text Summarization We provide the code for the papers: "Entity-level Factual Consistency of Abstractive T

61 Nov 27, 2022
Repository sharing code and the model for the paper "Rescoring Sequence-to-Sequence Models for Text Line Recognition with CTC-Prefixes"

Rescoring Sequence-to-Sequence Models for Text Line Recognition with CTC-Prefixes Setup virtualenv -p python3 venv source venv/bin/activate pip instal

Planet AI GmbH 9 May 20, 2022
MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research

MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research

Facebook Research 338 Dec 29, 2022
A PyTorch toolkit for 2D Human Pose Estimation.

PyTorch-Pose PyTorch-Pose is a PyTorch implementation of the general pipeline for 2D single human pose estimation. The aim is to provide the interface

Wei Yang 1.1k Dec 30, 2022
Demo code for paper "Learning optical flow from still images", CVPR 2021.

Depthstillation Demo code for "Learning optical flow from still images", CVPR 2021. [Project page] - [Paper] - [Supplementary] This code is provided t

130 Dec 25, 2022
prior-based-losses-for-medical-image-segmentation

Repository for papers: Benchmark: Effect of Prior-based Losses on Segmentation Performance: A Benchmark Midl: A Surprisingly Effective Perimeter-based

Rosana EL JURDI 9 Sep 07, 2022
Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021)

Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021) An efficient PyTorch library for Point Cloud Completion.

Microsoft 119 Jan 02, 2023
This is the repository of shape matching algorithm Iterative Rotations and Assignments (IRA)

Description This is the repository of shape matching algorithm Iterative Rotations and Assignments (IRA), described in the publication [1]. Directory

MAMMASMIAS Consortium 6 Nov 14, 2022
A list of all papers and resoureces on Semantic Segmentation

Semantic-Segmentation A list of all papers and resoureces on Semantic Segmentation. Dataset importance SemanticSegmentation_DL Some implementation of

Alan Tang 1.1k Dec 12, 2022
Calculates carbon footprint based on fuel mix and discharge profile at the utility selected. Can create graphs and tabular output for fuel mix based on input file of series of power drawn over a period of time.

carbon-footprint-calculator Conda distribution ~/anaconda3/bin/conda install anaconda-client conda-build ~/anaconda3/bin/conda config --set anaconda_u

Seattle university Renewable energy research 7 Sep 26, 2022
A comprehensive list of published machine learning applications to cosmology

ml-in-cosmology This github attempts to maintain a comprehensive list of published machine learning applications to cosmology, organized by subject ma

George Stein 290 Dec 29, 2022
A Tensorflow implementation of the Text Conditioned Auxiliary Classifier Generative Adversarial Network for Generating Images from text descriptions

A Tensorflow implementation of the Text Conditioned Auxiliary Classifier Generative Adversarial Network for Generating Images from text descriptions

Ayushman Dash 93 Aug 04, 2022
Official code repository for the EMNLP 2021 paper

Integrating Visuospatial, Linguistic and Commonsense Structure into Story Visualization PyTorch code for the EMNLP 2021 paper "Integrating Visuospatia

Adyasha Maharana 23 Dec 19, 2022
Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

FPT_data_centric_competition - Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

Pham Viet Hoang (Harry) 2 Oct 30, 2022