Demo code for paper "Learning optical flow from still images", CVPR 2021.

Overview

Depthstillation

Demo code for "Learning optical flow from still images", CVPR 2021.

[Project page] - [Paper] - [Supplementary]

This code is provided to replicate the qualitative results shown in the supplementary material, Sections 2-4. The code has been tested using Ubuntu 20.04 LTS, python 3.8 and gcc 9.3.0

Alt text

Reference

If you find this code useful, please cite our work:

@inproceedings{Aleotti_CVPR_2021,
  title     = {Learning optical flow from still images},
  author    = {Aleotti, Filippo and
               Poggi, Matteo and
               Mattoccia, Stefano},
  booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  year = {2021}
}

Contents

  1. Introduction
  2. Usage
  3. Supplementary
  4. Weights
  5. Contacts
  6. Acknowledgments

Introduction

This paper deals with the scarcity of data for training optical flow networks, highlighting the limitations of existing sources such as labeled synthetic datasets or unlabeled real videos. Specifically, we introduce a framework to generate accurate ground-truth optical flow annotations quickly and in large amounts from any readily available single real picture. Given an image, we use an off-the-shelf monocular depth estimation network to build a plausible point cloud for the observed scene. Then, we virtually move the camera in the reconstructed environment with known motion vectors and rotation angles, allowing us to synthesize both a novel view and the corresponding optical flow field connecting each pixel in the input image to the one in the new frame. When trained with our data, state-of-the-art optical flow networks achieve superior generalization to unseen real data compared to the same models trained either on annotated synthetic datasets or unlabeled videos, and better specialization if combined with synthetic images.

Usage

Install the project requirements in a new python 3 environment:

virtualenv -p python3 learning_flow_env
source learning_flow_env/bin/activate
pip install -r requirements.txt

Compile the forward_warping module, written in C (required to handle warping collisions):

cd external/forward_warping
bash compile.sh
cd ../..

You are now ready to run the depthstillation.py script:

python depthstillation.py 

By switching some parameters you can generate all the qualitatives provided in the supplementary material.

These parameters are:

  • num_motions: changes the number of virtual motions
  • segment: enables instance segmentation (for independently moving objects)
  • mask_type: mask selection. Options are H' and H
  • num_objects: sets the number of independently moving objects (one, in this example)
  • no_depth: disables monocular depth and force depth to assume a constant value
  • no_sharp: disables depth sharpening
  • change_k: uses different intrinsics K
  • change_motion: samples a different motion (ignored if num_motions greater than 1)

For instance, to simulate a different K settings, just run:

python depthstillation.py --change_k

The results are saved in dCOCO folder, organized as follows:

  • depth_color: colored depth map
  • flow: generated flow labels (in 16bit KITTI format)
  • flow_color: colored flow labels
  • H: H mask
  • H': H' mask
  • im0: real input image
  • im1: generated virtual image
  • im1_raw: generated virtual image (pre-inpainting)
  • instances_color: colored instance map (if --segment is enabled)
  • M: M mask
  • M': M' mask
  • P: P mask

We report the list of files used to depthstill dCOCO in samples/dCOCO_file_list.txt

Supplementary

We report here the list of commands to obtain, in the same order, the Figures shown in Sections 2-4 of the Supplementary Material:

  • Section 2 -- the first figure is obtained with default parameters, then we use --no_depth and --no_depth --segment respectively
  • Section 3 -- the first figure is obtained with --no_sharp, the remaining figures with default parameters or by setting --mask_type "H".
  • Section 4 -- we show three times the results obtained by default parameters, followed respectively by figures generated using --change_k, --change_motion and --segment individually.

Weights

We provide RAFT models trained in our experiments. To run them and reproduce our results, please refer to RAFT repository:

Contacts

m [dot] poggi [at] unibo [dot] it

Acknowledgments

Thanks to Clément Godard and Niantic for sharing monodepth2 code, used to simulate camera motion.

Our work is inspired by Jamie Watson et al., Learning Stereo from Single Images.

A transformer-based method for Healthcare Image Captioning in Vietnamese

vieCap4H Challenge 2021: A transformer-based method for Healthcare Image Captioning in Vietnamese This repo GitHub contains our solution for vieCap4H

Doanh B C 4 May 05, 2022
Codes for "CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation"

CSDI This is the github repository for the NeurIPS 2021 paper "CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation

106 Jan 04, 2023
A GUI to automatically create a TOPAS-readable MLC simulation file

Python script to create a TOPAS-readable simulation file descriring a Multi-Leaf-Collimator. Builds the MLC using the data from a 3D .stl file.

Sebastian Schäfer 0 Jun 19, 2022
Reimplement of SimSwap training code

SimSwap-train Reimplement of SimSwap training code Instructions 1.Environment Preparation (1)Refer to the README document of SIMSWAP to configure the

seeprettyface.com 111 Dec 31, 2022
Official PyTorch implementation of paper: Standardized Max Logits: A Simple yet Effective Approach for Identifying Unexpected Road Obstacles in Urban-Scene Segmentation (ICCV 2021 Oral Presentation)

SML (ICCV 2021, Oral) : Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Standardi

SangHun 61 Dec 27, 2022
Collision risk estimation using stochastic motion models

collision_risk_estimation Collision risk estimation using stochastic motion models. This is a new approach, based on stochastic models, to predict the

Unmesh 7 Jun 26, 2022
A task-agnostic vision-language architecture as a step towards General Purpose Vision

Towards General Purpose Vision Systems By Tanmay Gupta, Amita Kamath, Aniruddha Kembhavi, and Derek Hoiem Overview Welcome to the official code base f

AI2 79 Dec 23, 2022
Fast Neural Representations for Direct Volume Rendering

Fast Neural Representations for Direct Volume Rendering Sebastian Weiss, Philipp Hermüller, Rüdiger Westermann This repository contains the code and s

Sebastian Weiss 20 Dec 03, 2022
Implicit Model Specialization through DAG-based Decentralized Federated Learning

Federated Learning DAG Experiments This repository contains software artifacts to reproduce the experiments presented in the Middleware '21 paper "Imp

Operating Systems and Middleware Group 5 Oct 16, 2022
A fuzzing framework for SMT solvers

yinyang A fuzzing framework for SMT solvers. Given a set of seed SMT formulas, yinyang generates mutant formulas to stress-test SMT solvers. yinyang c

Project Yin-Yang for SMT Solver Testing 145 Jan 04, 2023
PyTorch-based framework for Deep Hedging

PFHedge: Deep Hedging in PyTorch PFHedge is a PyTorch-based framework for Deep Hedging. PFHedge Documentation Neural Network Architecture for Efficien

139 Dec 30, 2022
​ This is the Pytorch implementation of Progressive Attentional Manifold Alignment.

PAMA This is the Pytorch implementation of Progressive Attentional Manifold Alignment. Requirements python 3.6 pytorch 1.2.0+ PIL, numpy, matplotlib C

98 Nov 15, 2022
The project of phase's key role in complex and real NN

Phase-in-NN This is the code for our project at Princeton (co-authors: Yuqi Nie, Hui Yuan). The paper title is: "Neural Network is heterogeneous: Phas

YuqiNie-lab 1 Nov 04, 2021
Code and Resources for the Transformer Encoder Reasoning Network (TERN)

Transformer Encoder Reasoning Network Code for the cross-modal visual-linguistic retrieval method from "Transformer Reasoning Network for Image-Text M

Nicola Messina 53 Dec 30, 2022
PoseCamera is python based SDK for human pose estimation through RGB webcam.

PoseCamera PoseCamera is python based SDK for human pose estimation through RGB webcam. Install install posecamera package through pip pip install pos

WonderTree 7 Jul 20, 2021
An implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional Neural Network"

Retina Blood Vessels Segmentation This is an implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional

Srijarko Roy 23 Aug 20, 2022
code for CVPR paper Zero-shot Instance Segmentation

Code for CVPR2021 paper Zero-shot Instance Segmentation Code requirements python: python3.7 nvidia GPU pytorch1.1.0 GCC =5.4 NCCL 2 the other python

zhengye 86 Dec 13, 2022
CVPR 2020 oral paper: Overcoming Classifier Imbalance for Long-tail Object Detection with Balanced Group Softmax.

Overcoming Classifier Imbalance for Long-tail Object Detection with Balanced Group Softmax ⚠️ Latest: Current repo is a complete version. But we delet

FishYuLi 341 Dec 23, 2022
Notspot robot simulation - Python version

Notspot robot simulation - Python version This repository contains all the files and code needed to simulate the notspot quadrupedal robot using Gazeb

50 Sep 26, 2022
STARCH compuets regional extreme storm physical characteristics and moisture balance based on spatiotemporal precipitation data from reanalysis or climate model data.

STARCH (Storm Tracking And Regional CHaracterization) STARCH computes regional extreme storm physical and moisture balance characteristics based on sp

Onosama 7 Oct 20, 2022