Implicit Model Specialization through DAG-based Decentralized Federated Learning

Overview

Federated Learning DAG Experiments

This repository contains software artifacts to reproduce the experiments presented in the Middleware '21 paper "Implicit Model Specialization through DAG-based Decentralized Federated Learning"

General Usage

Since we are still using TensorFlow 1, Python <=3.7 is required.

Depending on your setup, you can obtain the old python version using a version manager such as pyenv or using a Docker container:

cd federated-learning-dag
docker run -d --name federated-learning-dag \
  -v $PWD:/workspace \
  --workdir /workspace \
  --init --shm-size 8g \
  mcr.microsoft.com/vscode/devcontainers/python:3.7-bullseye \
    tail -f /dev/null
docker exec -it federated-learning-dag bash
# Run pipenv commands in this shell

# Clean up
docker rm -f federated-learning-dag 

Then, use pipenv to set up your environment. VS Code users can use the provided devcontainer template as a base environment. Run pipenv install to download the dependencies and run the code within a pipenv shell.

There are two execution variants: A default, single-threaded one, and an extended version using the 'ray' parallelism library.

Basic usage: python -m tangle.lab --help (or python -m tangle.ray --help).

By default, all experiments_figure_[*].py use ray for parallelism. This requires lots of main memory and a shared memory option for use within Docker. VS Code devcontainer users have to add "--shm-size", "8gb" (depending on the available memory) to the runArgs in .devcontainer/devcontainer.json.

To view a DAG (sometimes called a tangle) in a web browser, run python -m http.server in the repository root and open http://localhost:8000/viewer/. Enter the name of your experiment run and adjust the round slider to see something.

Obtaining the datasets

The contents of the ./data directory can be obtained from https://data.osmhpi.de/ipfs/QmQMe1Bd8X7tqQHWqcuS17AQZUqcfRQmNRgrenJD2o8xsS/.

Reproduction of the evaluation in the paper

The experiements in the paper can be reproduced by running python scripts in the root folder of this repository. They are organized by the figures in which the respective evaluation is presented and named experiments_figure_[*].py

The results of the federated averaging runs presented in Figure 9 as baseline can be reproduced by running run_fed_avg_[fmnist,poets,cifar].py The results presented in Table 2 are generated by the scripts for DAG-IS of Figure 9 as well.

Owner
Operating Systems and Middleware Group
Operating Systems and Middleware Group
Source code for our paper "Do Not Trust Prediction Scores for Membership Inference Attacks"

Do Not Trust Prediction Scores for Membership Inference Attacks Abstract: Membership inference attacks (MIAs) aim to determine whether a specific samp

<a href=[email protected]"> 3 Oct 25, 2022
Video lie detector using xgboost - A video lie detector using OpenFace and xgboost

video_lie_detector_using_xgboost a video lie detector using OpenFace and xgboost

2 Jan 11, 2022
MvtecAD unsupervised Anomaly Detection

MvtecAD unsupervised Anomaly Detection This respository is the unofficial implementations of DFR: Deep Feature Reconstruction for Unsupervised Anomaly

0 Feb 25, 2022
Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR) This is the official implementation of our paper Personalized Tran

Yongchun Zhu 81 Dec 29, 2022
[ICCV'21] Official implementation for the paper Social NCE: Contrastive Learning of Socially-aware Motion Representations

CrowdNav with Social-NCE This is an official implementation for the paper Social NCE: Contrastive Learning of Socially-aware Motion Representations by

VITA lab at EPFL 125 Dec 23, 2022
a grammar based feedback fuzzer

Nautilus NOTE: THIS IS AN OUTDATE REPOSITORY, THE CURRENT RELEASE IS AVAILABLE HERE. THIS REPO ONLY SERVES AS A REFERENCE FOR THE PAPER Nautilus is a

Chair for Sys­tems Se­cu­ri­ty 158 Dec 28, 2022
Implementation of ETSformer, state of the art time-series Transformer, in Pytorch

ETSformer - Pytorch Implementation of ETSformer, state of the art time-series Transformer, in Pytorch Install $ pip install etsformer-pytorch Usage im

Phil Wang 121 Dec 30, 2022
PyTorch code for ICPR 2020 paper Future Urban Scene Generation Through Vehicle Synthesis

Future urban scene generation through vehicle synthesis This repository contains Pytorch code for the ICPR2020 paper "Future Urban Scene Generation Th

Alessandro Simoni 4 Oct 11, 2021
Position detection system of mobile robot in the warehouse enviroment

Autonomous-Forklift-System About | GUI | Tests | Starting | License | Author | 🎯 About An application that run the autonomous forklift paletization a

Kamil Goś 1 Nov 24, 2021
ICLR 2021 i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning

Introduction PyTorch code for the ICLR 2021 paper [i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning]. @inproceedings{lee2021i

Kibok Lee 68 Nov 27, 2022
SafePicking: Learning Safe Object Extraction via Object-Level Mapping, ICRA 2022

SafePicking Learning Safe Object Extraction via Object-Level Mapping Kentaro Wad

Kentaro Wada 49 Oct 24, 2022
salabim - discrete event simulation in Python

Object oriented discrete event simulation and animation in Python. Includes process control features, resources, queues, monitors. statistical distrib

181 Dec 21, 2022
Graph Robustness Benchmark: A scalable, unified, modular, and reproducible benchmark for evaluating the adversarial robustness of Graph Machine Learning.

Homepage | Paper | Datasets | Leaderboard | Documentation Graph Robustness Benchmark (GRB) provides scalable, unified, modular, and reproducible evalu

THUDM 66 Dec 22, 2022
StrongSORT: Make DeepSORT Great Again

StrongSORT StrongSORT: Make DeepSORT Great Again StrongSORT: Make DeepSORT Great Again Yunhao Du, Yang Song, Bo Yang, Yanyun Zhao arxiv 2202.13514 Abs

369 Jan 04, 2023
A Kaggle competition: discriminate gender based on handwriting

Gender discrimination based on handwriting See http://fastml.com/gender-discrimination/ for description. prep_data.py - a first step chunk_by_authors.

Zygmunt Zając 22 Jul 20, 2022
Working demo of the Multi-class and Anomaly classification model using the CLIP feature space

👁️ Hindsight AI: Crime Classification With Clip About For Educational Purposes Only This is a recursive neural net trained to classify specific crime

Miles Tweed 2 Jun 05, 2022
This python-based package offers a way of creating a parametric OpenMC plasma source from plasma parameters.

openmc-plasma-source This python-based package offers a way of creating a parametric OpenMC plasma source from plasma parameters. The OpenMC sources a

Fusion Energy 10 Oct 18, 2022
On Out-of-distribution Detection with Energy-based Models

On Out-of-distribution Detection with Energy-based Models This repository contains the code for the experiments conducted in the paper On Out-of-distr

Sven 19 Aug 07, 2022
A Python package for generating concise, high-quality summaries of a probability distribution

GoodPoints A Python package for generating concise, high-quality summaries of a probability distribution GoodPoints is a collection of tools for compr

Microsoft 28 Oct 10, 2022