High dimensional black-box optimizer using Latent Action Monte Carlo Tree Search algorithm

Related tags

Deep LearningLA-MCTS
Overview

LA-MCTS

The code is based of paper Learning Search Space Partition for Black-box Optimization using Monte Carlo Tree Search.

Component

LA-MCTS has three major components:

Main Loop

At each iteration, main loop builds the Monte Carlo search tree, selects next node, and samples on selected nodes.

Classifier

Classifiers define rules to split a node, they also predict if a sample belongs to the node. Currently there are several builtin classifiers:

SVM Based Classifiers

In these classifiers, some cluster algorithm is used to label the samples, then SVM is used to classify the samples. Builtin cluster algorithms include:

  • KMeans
  • Threshold
  • Linear regression

Regression Classifier

A regressor is used to fit samples, then a threshold (median or mean) is used to separate them.

Samplers

Samplers draw samples in node space. Currently builtin samplers include:

  • Random sampler
  • Bayesian sampler
  • TuRBO sampler
  • CMAES sampler
  • Nevergrad sampler

Users may provide their own classifier and/or sampler by implementing Classifier and Sampler interface.

Usage

An example can be found at example_opt.py.

Docs

Detailed docs can found at here.

License

LA-MCTS is under CC-BY-NC 4.0 license.

Owner
Meta Research
Meta Research
A Fast Monotone Rotating Shallow Water model

pyRSW A Fast Monotone Rotating Shallow Water model How fast? As fast as a sustained 2 Gflop/s per core on a 2.5 GHz cpu (or 2048 Gflop/s with 1024 cor

Guillaume Roullet 13 Sep 28, 2022
Provably Rare Gem Miner.

Provably Rare Gem Miner just another random project by yoyoismee.eth useful link main site market contract useful thing you should know read contract

34 Nov 22, 2022
PyTorch implementation of PNASNet-5 on ImageNet

PNASNet.pytorch PyTorch implementation of PNASNet-5. Specifically, PyTorch code from this repository is adapted to completely match both my implemetat

Chenxi Liu 314 Nov 25, 2022
Yolo ros - YOLO-ROS for HUAWEI ATLAS200

YOLO-ROS YOLO-ROS for NVIDIA YOLO-ROS for HUAWEI ATLAS200, please checkout for b

ChrisLiu 5 Oct 18, 2022
3rd Place Solution of the Traffic4Cast Core Challenge @ NeurIPS 2021

3rd Place Solution of Traffic4Cast 2021 Core Challenge This is the code for our solution to the NeurIPS 2021 Traffic4Cast Core Challenge. Paper Our so

7 Jul 25, 2022
MetaBalance: High-Performance Neural Networks for Class-Imbalanced Data

This repository is the official PyTorch implementation of Meta-Balance. Find the paper on arxiv MetaBalance: High-Performance Neural Networks for Clas

Arpit Bansal 20 Oct 18, 2021
Explicable Reward Design for Reinforcement Learning Agents [NeurIPS'21]

Explicable Reward Design for Reinforcement Learning Agents [NeurIPS'21]

3 May 12, 2022
Deep Learning Interviews book: Hundreds of fully solved job interview questions from a wide range of key topics in AI.

This book was written for you: an aspiring data scientist with a quantitative background, facing down the gauntlet of the interview process in an increasingly competitive field. For most of you, the

4.1k Dec 28, 2022
ICCV2021, Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet

Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet, ICCV 2021 Update: 2021/03/11: update our new results. Now our T2T-ViT-14 w

YITUTech 1k Dec 31, 2022
A library for researching neural networks compression and acceleration methods.

A library for researching neural networks compression and acceleration methods.

Intel Labs 100 Dec 29, 2022
The official PyTorch implementation of paper BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed Visual Recognition

BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed Visual Recognition Boyan Zhou, Quan Cui, Xiu-Shen Wei*, Zhao-Min Chen This repo

Megvii-Nanjing 616 Dec 21, 2022
Saeed Lotfi 28 Dec 12, 2022
Semi-supervised Implicit Scene Completion from Sparse LiDAR

Semi-supervised Implicit Scene Completion from Sparse LiDAR Paper Created by Pengfei Li, Yongliang Shi, Tianyu Liu, Hao Zhao, Guyue Zhou and YA-QIN ZH

114 Nov 30, 2022
Minimal implementation of Denoised Smoothing: A Provable Defense for Pretrained Classifiers in TensorFlow.

Denoised-Smoothing-TF Minimal implementation of Denoised Smoothing: A Provable Defense for Pretrained Classifiers in TensorFlow. Denoised Smoothing is

Sayak Paul 19 Dec 11, 2022
social humanoid robots with GPGPU and IoT

Social humanoid robots with GPGPU and IoT Social humanoid robots with GPGPU and IoT Paper Authors Mohsen Jafarzadeh, Stephen Brooks, Shimeng Yu, Balak

0 Jan 07, 2022
An OpenAI Gym environment for Super Mario Bros

gym-super-mario-bros An OpenAI Gym environment for Super Mario Bros. & Super Mario Bros. 2 (Lost Levels) on The Nintendo Entertainment System (NES) us

Andrew Stelmach 1 Jan 05, 2022
Code for CVPR2021 paper "Learning Salient Boundary Feature for Anchor-free Temporal Action Localization"

AFSD: Learning Salient Boundary Feature for Anchor-free Temporal Action Localization This is an official implementation in PyTorch of AFSD. Our paper

Tencent YouTu Research 146 Dec 24, 2022
HashNeRF-pytorch - Pure PyTorch Implementation of NVIDIA paper on Instant Training of Neural Graphics primitives

HashNeRF-pytorch Instant-NGP recently introduced a Multi-resolution Hash Encodin

Yash Sanjay Bhalgat 616 Jan 06, 2023
Deep learning PyTorch library for time series forecasting, classification, and anomaly detection

Deep learning for time series forecasting Flow forecast is an open-source deep learning for time series forecasting framework. It provides all the lat

AIStream 1.2k Jan 04, 2023
My implementation of Image Inpainting - A deep learning Inpainting model

Image Inpainting What is Image Inpainting Image inpainting is a restorative process that allows for the fixing or removal of unwanted parts within ima

Joshua V Evans 1 Dec 12, 2021