A Large-Scale Dataset for Spinal Vertebrae Segmentation in Computed Tomography

Overview

Update 7/5/2021

Note that for VerSe dataset partially visible vertebrae at the top or bottom of the scan (or both) were not annotated, while CTSpine1K annotated them, which caused the situation that in our previous-version paper the reported dice value on VerSe dataset is much lower than on CTSpine1K dataset (0.619 VS 0.840). Therefore, we annotated all visible vertebrea (see figure below) and recalculated the metrics(0.766 VS 0.840).

We have updated our paper on arxiv and uploaded the completed annotations for VerSe dataset to Google drive Google drive and Baiduyun (password:send email to [email protected]). label

Besides, we updated a more specific biconcave fracture case on Figure 1(F).

Update 6/11/2021

We upload the Path.csv to clarify the CT positions we used for COLONOG dataset and HNSCC-3DCT-RT dataset, and delete the dicom2nii.py file. We also upload the original CT images to Baiduyun (password:send email to [email protected])

Introduction for the CTSpine1K dataset

To advance the research in spinal image analysis, we hereby present a large-scale and comprehensive dataset: CTSpine1K. To build a comprehensive spine dataset that replicates practical appearance variations, we curate CTSpine1K from the following four open sources, totalling 1,005 CT volumes (over 500,000 labeled slices and over 11,000 vertebrae) of diverse appearance variations.

*COLONOG. This sub-dataset comes from the CT COLONOGRAPHY dataset related to a CT colonography trial12. We randomly select one of the two positions (we open the code for selecting them, dicom2nii.py), which have similar information, of each patient for our dataset . There are 825 CT scans and are in Digital Imaging and Communication in Medicine (DICOM) format.

*HNSCC-3DCT-RT. This sub-dataset contains three dimensional (3D) high-resolution fan-beam CT scans collected during pre-treatment, mid-treatment, and post-treatment using a Siemens 16-slice CT scanner with the standard clinical protocol for head-and-neck squamous cell carcinoma (HNSCC) patients13. These images are in DICOM format.

*MSD T10. This sub-dataset comes from the 10th Medical Segmentation Decathlon14. To attain more slices containing the spine, we select the task03_liver dataset consisting of 201 cases. These images are in Neuroimaging Informatics Technology Initiative (NIfTI) format (https://nifti.nimh.nih.gov/nifti-1).

*COVID-19. This sub-dataset consists of non-enhanced chest CTs from 632 patients with COVID-19 infections. The images were acquired at the point of care in an outbreak setting from patients with Reverse Transcription Polymerase Chain Reaction(RT-PCR) confirmation for the presence of SARS-CoV-215. We pick 40 scans with the images stored in NIfTI format.

We reformat all DICOM images to NIfTI to simplify data processing and de-identify images, meeting the institutional review board (IRB) policies of contributing sites. More details for those sub-datasets could be found in12–15. All existing sub-datasets are under Creative Commons license CC-BY-NC-SA and we will keep the license unchanged. It should be noted that for sub-dataset task03_liver and sub-dataset COVID-19, we only choose a part of cases from them, and in all these data sources, we exclude those cases of very low quality. The overview of our dataset and the thorough comparison with the VerSe Challenge dataset (We only chose those samples which are not cropped) can be seen in Table 1.

spine1K situation

For more information about CTSpine1K dataset, please read the following paper. Please also cite this paper if you are using CTSpine1K dataset for your research.

Yang Deng, Ce Wang, Yuan Hui, et al. CtSpine1k: A large-scale dataset for spinal vertebrae segmentation in computed tomography. arXiv preprint arXiv:2105.14711 (2021). 

Downloading the CTSpine1K Dataset

The original images could be downloaded from correspongding URL above.

The segmentation masks and the pre-trained model are on Google drive or Baiduyun (password:send email to [email protected])

Annotation pipeline with nnUnet

Follow https://github.com/MIC-DKFZ/nnUNet/commit/058b695d61d34dda7f79cd36ab950a5d3e031653 to set and use nnUnet. The specific usage we here could be seen in ReadMe.md file. Our annotation pipeline is presented in figure 2 below. annotataion

Benchmarking results

The benchmarking results are shown in Table 2. table

Acknowledgement

Thank Febian's nnUnet and we appreciate the open-source sub-datasets we used.

Thank Jianji Wang and Guoxin Fan(MD) for their help in Fig.1(F)

Please feel free to email [email protected] if you have any question.

Owner
ICT.MIRACLE lab
The Medical Imaging, Robotics, Analytical Computing Laboratory & Engineering (MIRACLE) group
ICT.MIRACLE lab
Entity-Based Knowledge Conflicts in Question Answering.

Entity-Based Knowledge Conflicts in Question Answering Run Instructions | Paper | Citation | License This repository provides the Substitution Framewo

Apple 35 Oct 19, 2022
571 Dec 25, 2022
Open Source Light Field Toolbox for Super-Resolution

BasicLFSR BasicLFSR is an open-source and easy-to-use Light Field (LF) image Super-Ressolution (SR) toolbox based on PyTorch, including a collection o

Squidward 50 Nov 18, 2022
Physics-Aware Training (PAT) is a method to train real physical systems with backpropagation.

Physics-Aware Training (PAT) is a method to train real physical systems with backpropagation. It was introduced in Wright, Logan G. & Onodera, Tatsuhiro et al. (2021)1 to train Physical Neural Networ

McMahon Lab 230 Jan 05, 2023
Unofficial implementation of the paper: PonderNet: Learning to Ponder in TensorFlow

PonderNet-TensorFlow This is an Unofficial Implementation of the paper: PonderNet: Learning to Ponder in TensorFlow. Official PyTorch Implementation:

1 Oct 23, 2022
A Light in the Dark: Deep Learning Practices for Industrial Computer Vision

A Light in the Dark: Deep Learning Practices for Industrial Computer Vision This is the repository for our Paper/Contribution to the WI2022 in Nürnber

Maximilian Harl 6 Jan 17, 2022
traiNNer is an open source image and video restoration (super-resolution, denoising, deblurring and others) and image to image translation toolbox based on PyTorch.

traiNNer traiNNer is an open source image and video restoration (super-resolution, denoising, deblurring and others) and image to image translation to

202 Jan 04, 2023
nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation "

nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation ". Please

jsguo 610 Dec 28, 2022
A minimalist tool to display a network graph.

A tool to get a minimalist view of any architecture This tool has only be tested with the models included in this repo. Therefore, I can't guarantee t

Thibault Castells 1 Feb 11, 2022
Lacmus is a cross-platform application that helps to find people who are lost in the forest using computer vision and neural networks.

lacmus The program for searching through photos from the air of lost people in the forest using Retina Net neural nwtwork. The project is being develo

Lacmus Foundation 168 Dec 27, 2022
BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition 2022)

BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition

Rui Qian 17 Dec 12, 2022
CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper)

CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper) (Accepted for oral presentation at ACM

Minha Kim 1 Nov 12, 2021
MohammadReza Sharifi 27 Dec 13, 2022
This repository stores the code to reproduce the results published in "TiWS-iForest: Isolation Forest in Weakly Supervised and Tiny ML scenarios"

TinyWeaklyIsolationForest This repository stores the code to reproduce the results published in "TiWS-iForest: Isolation Forest in Weakly Supervised a

2 Mar 21, 2022
Learning to See by Looking at Noise

Learning to See by Looking at Noise This is the official implementation of Learning to See by Looking at Noise. In this work, we investigate a suite o

Manel Baradad Jurjo 82 Dec 24, 2022
HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021)

Code for HDR Video Reconstruction HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021) Guanying Chen, Cha

Guanying Chen 64 Nov 19, 2022
An open source Python package for plasma science that is under development

PlasmaPy PlasmaPy is an open source, community-developed Python 3.7+ package for plasma science. PlasmaPy intends to be for plasma science what Astrop

PlasmaPy 444 Jan 07, 2023
The dataset of tweets pulling from Twitters with keyword: Hydroxychloroquine, location: US, Time: 2020

HCQ_Tweet_Dataset: FREE to Download. Keywords: HCQ, hydroxychloroquine, tweet, twitter, COVID-19 This dataset is associated with the paper "Understand

2 Mar 16, 2022
PyTorch implementation of Towards Accurate Alignment in Real-time 3D Hand-Mesh Reconstruction (ICCV 2021).

Towards Accurate Alignment in Real-time 3D Hand-Mesh Reconstruction Introduction This is official PyTorch implementation of Towards Accurate Alignment

TANG Xiao 96 Dec 27, 2022
The Simplest DCGAN Implementation

DCGAN in TensorLayer This is the TensorLayer implementation of Deep Convolutional Generative Adversarial Networks. Looking for Text to Image Synthesis

TensorLayer Community 310 Dec 13, 2022