ICLR 2021 i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning

Related tags

Deep Learningimix
Overview

Introduction

PyTorch code for the ICLR 2021 paper [i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning].

@inproceedings{lee2021imix,
  title={i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning},
  author={Lee, Kibok and Zhu, Yian and Sohn, Kihyuk and Li, Chun-Liang and Shin, Jinwoo and Lee, Honglak},
  booktitle={ICLR},
  year={2021}
}

Dependencies

  • python 3.7.4
  • numpy 1.17.2
  • pytorch 1.4.0
  • torchvision 0.5.0
  • cudatoolkit 10.1
  • librosa 0.8.0 for speech_commands
  • PIL 6.2.0 for GaussianBlur

Data

  • CIFAR-10/100 will automatically be downloaded.
  • For ImageNet, please refer to the [PyTorch ImageNet example]. The folder structure should be like data/imagenet/train/n01440764/
  • For speech commands, run bash speech_commands/download_speech_commands_dataset.sh.
  • For tabular datasets, download [covtype.data.gz] and [HIGGS.csv.gz], and place them in data/. They are processed when first loaded.

Running scripts

Please refer to [run.sh].

Plug-in example

For those who want to apply our method in their own code, we provide a minimal example based on [MoCo]:

# mixup: somewhere in main_moco.py
def mixup(input, alpha):
    beta = torch.distributions.beta.Beta(alpha, alpha)
    randind = torch.randperm(input.shape[0], device=input.device)
    lam = beta.sample([input.shape[0]]).to(device=input.device)
    lam = torch.max(lam, 1. - lam)
    lam_expanded = lam.view([-1] + [1]*(input.dim()-1))
    output = lam_expanded * input + (1. - lam_expanded) * input[randind]
    return output, randind, lam

# cutmix: somewhere in main_moco.py
def cutmix(input, alpha):
    beta = torch.distributions.beta.Beta(alpha, alpha)
    randind = torch.randperm(input.shape[0], device=input.device)
    lam = beta.sample().to(device=input.device)
    lam = torch.max(lam, 1. - lam)
    (bbx1, bby1, bbx2, bby2), lam = rand_bbox(input.shape[-2:], lam)
    output = input.clone()
    output[..., bbx1:bbx2, bby1:bby2] = output[randind][..., bbx1:bbx2, bby1:bby2]
    return output, randind, lam

def rand_bbox(size, lam):
    W, H = size
    cut_rat = (1. - lam).sqrt()
    cut_w = (W * cut_rat).to(torch.long)
    cut_h = (H * cut_rat).to(torch.long)

    cx = torch.zeros_like(cut_w, dtype=cut_w.dtype).random_(0, W)
    cy = torch.zeros_like(cut_h, dtype=cut_h.dtype).random_(0, H)

    bbx1 = (cx - cut_w // 2).clamp(0, W)
    bby1 = (cy - cut_h // 2).clamp(0, H)
    bbx2 = (cx + cut_w // 2).clamp(0, W)
    bby2 = (cy + cut_h // 2).clamp(0, H)

    new_lam = 1. - (bbx2 - bbx1).to(lam.dtype) * (bby2 - bby1).to(lam.dtype) / (W * H)

    return (bbx1, bby1, bbx2, bby2), new_lam

# https://github.com/facebookresearch/moco/blob/master/main_moco.py#L193
criterion = nn.CrossEntropyLoss(reduction='none').cuda(args.gpu)

# https://github.com/facebookresearch/moco/blob/master/main_moco.py#L302-L303
images[0], target_aux, lam = mixup(images[0], alpha=1.)
# images[0], target_aux, lam = cutmix(images[0], alpha=1.)
target = torch.arange(images[0].shape[0], dtype=torch.long).cuda()
output, _ = model(im_q=images[0], im_k=images[1])
loss = lam * criterion(output, target) + (1. - lam) * criterion(output, target_aux)

# https://github.com/facebookresearch/moco/blob/master/moco/builder.py#L142-L149
contrast = torch.cat([k, self.queue.clone().detach().t()], dim=0)
logits = torch.mm(q, contrast.t())

Note

Owner
Kibok Lee
Kibok Lee
Gesture Volume Control Using OpenCV and MediaPipe

This Project Uses OpenCV and MediaPipe Hand solutions to identify hands and Change system volume by taking thumb and index finger positions

Pratham Bhatnagar 6 Sep 12, 2022
Code release for DS-NeRF (Depth-supervised Neural Radiance Fields)

Depth-supervised NeRF: Fewer Views and Faster Training for Free Project | Paper | YouTube Pytorch implementation of our method for learning neural rad

524 Jan 08, 2023
Cards Against Humanity AI

cah-ai This is a Cards Against Humanity AI implemented using a pre-trained Semantic Search model. How it works A player is described by a combination

Alex Nichol 2 Aug 22, 2022
(CVPR 2021) PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds

PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds by Mutian Xu*, Runyu Ding*, Hengshuang Zhao, and Xiaojuan Qi. Int

CVMI Lab 228 Dec 25, 2022
The MATH Dataset

Measuring Mathematical Problem Solving With the MATH Dataset This is the repository for Measuring Mathematical Problem Solving With the MATH Dataset b

Dan Hendrycks 267 Dec 26, 2022
Real Time Object Detection and Classification using Yolo Algorithm.

Real time Object detection & Classification using YOLO algorithm. Real Time Object Detection and Classification using Yolo Algorithm. What is Object D

Ketan Chawla 1 Apr 17, 2022
Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic Scenes", ICCV 2021.

Deep 3D Mask Volume for View Synthesis of Dynamic Scenes Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic S

Ken Lin 17 Oct 12, 2022
Gradient-free global optimization algorithm for multidimensional functions based on the low rank tensor train format

ttopt Description Gradient-free global optimization algorithm for multidimensional functions based on the low rank tensor train (TT) format and maximu

5 May 23, 2022
A Simple Long-Tailed Rocognition Baseline via Vision-Language Model

BALLAD This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model. Requirements Python3 Pytorch(1.7.

Teli Ma 4 Jan 20, 2022
Generative Flow Networks for Discrete Probabilistic Modeling

Energy-based GFlowNets Code for Generative Flow Networks for Discrete Probabilistic Modeling by Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Vo

Narsil-Dinghuai Zhang 51 Dec 20, 2022
Rethinking Transformer-based Set Prediction for Object Detection

Rethinking Transformer-based Set Prediction for Object Detection Here are the code for the ICCV paper. The code is adapted from Detectron2 and AdelaiD

Zhiqing Sun 62 Dec 03, 2022
CNN designed for pansharpening

PROGRESSIVE BAND-SEPARATED CONVOLUTIONAL NEURAL NETWORK FOR MULTISPECTRAL PANSHARPENING This repository contains main code for the paper PROGRESSIVE B

SerendipitysX 3 Dec 29, 2021
Deep Learning for Time Series Forecasting.

nixtlats:Deep Learning for Time Series Forecasting [nikstla] (noun, nahuatl) Period of time. State-of-the-art time series forecasting for pytorch. Nix

Nixtla 5 Dec 06, 2022
A curated list of awesome open source libraries to deploy, monitor, version and scale your machine learning

Awesome production machine learning This repository contains a curated list of awesome open source libraries that will help you deploy, monitor, versi

The Institute for Ethical Machine Learning 12.9k Jan 04, 2023
Pytorch implementation of Compressive Transformers, from Deepmind

Compressive Transformer in Pytorch Pytorch implementation of Compressive Transformers, a variant of Transformer-XL with compressed memory for long-ran

Phil Wang 118 Dec 01, 2022
Decorator for PyMC3

sampled Decorator for reusable models in PyMC3 Provides syntactic sugar for reusable models with PyMC3. This lets you separate creating a generative m

Colin 50 Oct 08, 2021
JumpDiff: Non-parametric estimator for Jump-diffusion processes for Python

jumpdiff jumpdiff is a python library with non-parametric Nadaraya─Watson estimators to extract the parameters of jump-diffusion processes. With jumpd

Rydin 28 Dec 10, 2022
Simultaneous Detection and Segmentation

Simultaneous Detection and Segmentation This is code for the ECCV Paper: Simultaneous Detection and Segmentation Bharath Hariharan, Pablo Arbelaez,

Bharath Hariharan 96 Jul 20, 2022
Survival analysis (SA) is a well-known statistical technique for the study of temporal events.

DAGSurv Survival analysis (SA) is a well-known statistical technique for the study of temporal events. In SA, time-to-an-event data is modeled using a

Rahul Kukreja 1 Sep 05, 2022
GDSC-ML Team Interview Task

GDSC-ML-Team---Interview-Task Task 1 : Clean or Messy room In this task we have to classify the given test images as clean or messy. - Link for datase

Aayush. 1 Jan 19, 2022