StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks

Related tags

Deep LearningStackGAN
Overview

StackGAN

Tensorflow implementation for reproducing main results in the paper StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks by Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei Huang, Dimitris Metaxas.

Dependencies

python 2.7

TensorFlow 0.12

[Optional] Torch is needed, if use the pre-trained char-CNN-RNN text encoder.

[Optional] skip-thought is needed, if use the skip-thought text encoder.

In addition, please add the project folder to PYTHONPATH and pip install the following packages:

  • prettytensor
  • progressbar
  • python-dateutil
  • easydict
  • pandas
  • torchfile

Data

  1. Download our preprocessed char-CNN-RNN text embeddings for birds and flowers and save them to Data/.
  • [Optional] Follow the instructions reedscot/icml2016 to download the pretrained char-CNN-RNN text encoders and extract text embeddings.
  1. Download the birds and flowers image data. Extract them to Data/birds/ and Data/flowers/, respectively.
  2. Preprocess images.
  • For birds: python misc/preprocess_birds.py
  • For flowers: python misc/preprocess_flowers.py

Training

  • The steps to train a StackGAN model on the CUB dataset using our preprocessed data for birds.
    • Step 1: train Stage-I GAN (e.g., for 600 epochs) python stageI/run_exp.py --cfg stageI/cfg/birds.yml --gpu 0
    • Step 2: train Stage-II GAN (e.g., for another 600 epochs) python stageII/run_exp.py --cfg stageII/cfg/birds.yml --gpu 1
  • Change birds.yml to flowers.yml to train a StackGAN model on Oxford-102 dataset using our preprocessed data for flowers.
  • *.yml files are example configuration files for training/testing our models.
  • If you want to try your own datasets, here are some good tips about how to train GAN. Also, we encourage to try different hyper-parameters and architectures, especially for more complex datasets.

Pretrained Model

  • StackGAN for birds trained from char-CNN-RNN text embeddings. Download and save it to models/.
  • StackGAN for flowers trained from char-CNN-RNN text embeddings. Download and save it to models/.
  • StackGAN for birds trained from skip-thought text embeddings. Download and save it to models/ (Just used the same setting as the char-CNN-RNN. We assume better results can be achieved by playing with the hyper-parameters).

Run Demos

  • Run sh demo/flowers_demo.sh to generate flower samples from sentences. The results will be saved to Data/flowers/example_captions/. (Need to download the char-CNN-RNN text encoder for flowers to models/text_encoder/. Note: this text encoder is provided by reedscot/icml2016).
  • Run sh demo/birds_demo.sh to generate bird samples from sentences. The results will be saved to Data/birds/example_captions/.(Need to download the char-CNN-RNN text encoder for birds to models/text_encoder/. Note: this text encoder is provided by reedscot/icml2016).
  • Run python demo/birds_skip_thought_demo.py --cfg demo/cfg/birds-skip-thought-demo.yml --gpu 2 to generate bird samples from sentences. The results will be saved to Data/birds/example_captions-skip-thought/. (Need to download vocabulary for skip-thought vectors to Data/skipthoughts/).

Examples for birds (char-CNN-RNN embeddings), more on youtube:

Examples for flowers (char-CNN-RNN embeddings), more on youtube:

Save your favorite pictures generated by our models since the randomness from noise z and conditioning augmentation makes them creative enough to generate objects with different poses and viewpoints from the same discription 😃

Citing StackGAN

If you find StackGAN useful in your research, please consider citing:

@inproceedings{han2017stackgan,
Author = {Han Zhang and Tao Xu and Hongsheng Li and Shaoting Zhang and Xiaogang Wang and Xiaolei Huang and Dimitris Metaxas},
Title = {StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks},
Year = {2017},
booktitle = {{ICCV}},
}

Our follow-up work

References

  • Generative Adversarial Text-to-Image Synthesis Paper Code
  • Learning Deep Representations of Fine-grained Visual Descriptions Paper Code
Owner
Han Zhang
Han Zhang
A keras implementation of ENet (abandoned for the foreseeable future)

ENet-keras This is an implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation, ported from ENet-training (lua-t

Pavlos 115 Nov 23, 2021
Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"

Low-light Image Enhancement via Breaking Down the Darkness by Qiming Hu, Xiaojie Guo. 1. Dependencies Python3 PyTorch=1.0 OpenCV-Python, TensorboardX

Qiming Hu 30 Jan 01, 2023
Trading Gym is an open source project for the development of reinforcement learning algorithms in the context of trading.

Trading Gym Trading Gym is an open-source project for the development of reinforcement learning algorithms in the context of trading. It is currently

Dimitry Foures 535 Nov 15, 2022
Official implement of Paper:A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sening images

A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images 深度监督影像融合网络DSIFN用于高分辨率双时相遥感影像变化检测 Of

Chenxiao Zhang 135 Dec 19, 2022
Predicting path with preference based on user demonstration using Maximum Entropy Deep Inverse Reinforcement Learning in a continuous environment

Preference-Planning-Deep-IRL Introduction Check my portfolio post Dependencies Gym stable-baselines3 PyTorch Usage Take Demonstration python3 record.

Tianyu Li 9 Oct 26, 2022
AI-Fitness-Tracker - AI Fitness Tracker With Python

AI-Fitness-Tracker We have build a AI based Fitness Tracker using OpenCV and Pyt

Sharvari Mangale 5 Feb 09, 2022
Voice Conversion by CycleGAN (语音克隆/语音转换):CycleGAN-VC3

CycleGAN-VC3-PyTorch 中文说明 | English This code is a PyTorch implementation for paper: CycleGAN-VC3: Examining and Improving CycleGAN-VCs for Mel-spectr

Kun Ma 110 Dec 24, 2022
Source code for the Paper: CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints}

CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints Installation Run pipenv install (at your own risk with --skip-lo

Autonomous Learning Group 65 Dec 27, 2022
Code of PVTv2 is released! PVTv2 largely improves PVTv1 and works better than Swin Transformer with ImageNet-1K pre-training.

Updates (2020/06/21) Code of PVTv2 is released! PVTv2 largely improves PVTv1 and works better than Swin Transformer with ImageNet-1K pre-training. Pyr

1.3k Jan 04, 2023
Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models.

WECHSEL Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models. arXiv: https://arx

Institute of Computational Perception 45 Dec 29, 2022
This repository contains the code used in the paper "Prompt-Based Multi-Modal Image Segmentation".

Prompt-Based Multi-Modal Image Segmentation This repository contains the code used in the paper "Prompt-Based Multi-Modal Image Segmentation". The sys

Timo Lüddecke 305 Dec 30, 2022
WTTE-RNN a framework for churn and time to event prediction

WTTE-RNN Weibull Time To Event Recurrent Neural Network A less hacky machine-learning framework for churn- and time to event prediction. Forecasting p

Egil Martinsson 727 Dec 28, 2022
StyleGAN2 Webtoon / Anime Style Toonify

StyleGAN2 Webtoon / Anime Style Toonify Korea Webtoon or Japanese Anime Character Stylegan2 base high Quality 1024x1024 / 512x512 Generate and Transfe

121 Dec 21, 2022
History Aware Multimodal Transformer for Vision-and-Language Navigation

History Aware Multimodal Transformer for Vision-and-Language Navigation This repository is the official implementation of History Aware Multimodal Tra

Shizhe Chen 46 Nov 23, 2022
Accelerate Neural Net Training by Progressively Freezing Layers

FreezeOut A simple technique to accelerate neural net training by progressively freezing layers. This repository contains code for the extended abstra

Andy Brock 203 Jun 19, 2022
Human4D Dataset tools for processing and visualization

HUMAN4D: A Human-Centric Multimodal Dataset for Motions & Immersive Media HUMAN4D constitutes a large and multimodal 4D dataset that contains a variet

tofis 15 Nov 09, 2022
Visualizer using audio and semantic analysis to explore BigGAN (Brock et al., 2018) latent space.

BigGAN Audio Visualizer Description This visualizer explores BigGAN (Brock et al., 2018) latent space by using pitch/tempo of an audio file to generat

Rush Kapoor 2 Nov 21, 2022
「PyTorch Implementation of AnimeGANv2」を用いて、生成した顔画像を元の画像に上書きするデモ

AnimeGANv2-Face-Overlay-Demo PyTorch Implementation of AnimeGANv2を用いて、生成した顔画像を元の画像に上書きするデモです。

KazuhitoTakahashi 21 Oct 18, 2022
Marine debris detection with commercial satellite imagery and deep learning.

Marine debris detection with commercial satellite imagery and deep learning. Floating marine debris is a global pollution problem which threatens mari

Inter Agency Implementation and Advanced Concepts 56 Dec 16, 2022
Neural network for stock price prediction

neural_network_for_stock_price_prediction Neural networks for stock price predic

2 Feb 04, 2022