Simulating Sycamore quantum circuits classically using tensor network algorithm.

Overview

Simulating the Sycamore quantum supremacy circuit

This repo contains data we have obtained in simulating the Sycamore quantum supremacy circuits with $n=53$ qubits, $m=20$ cycles using the tensor network method proposed in arXiv:2103.03074.

We plan to release the code soon.

Explanation of data

  1. data/circuit_n53_m20_s0_e0_pABCDCDAB.py is the circuit file which has been download from the Google's data repository for the Sycamore circuits.
  2. data/bipartition_n53_m20_s0_ABCD_s24_simplify_.txt is the initial bipartition of the simplified tensor network corresponding to Sycamore circuit with 53 qubits, 20 cycles, seed 0, elide 0 and ABCDCDAB sequence. There are two lines in the file, the first line indicates the tail partition which includes 21 open qubits, while the second line includes the head partition with 32 closed qubits. The simplification of the tensor network is done by sequentially contracting tensors with 2 or less dimensions.
  3. data/n53_m20_s0_ABCD_s24_simplify_gpulimit_30_edges.txt contains the 23 slicing edges which splits the overall contraction task into $2^{23}$ subtasks, each of which has space complexity $2^{30}$ hence can be contracted using fit into 32G memory.
  4. data/n53_m20_s0_ABCD_s24_simplify_gpulimit_30_ordernew.txt includes the contraction order. For each edge in the contraction order, say $i, j$, the $i$th and $j$th tensor in the head partition will be contracted by tracing out the shared indices. Then the resulting tensor will be put back into the $i$th position.
  5. vector.pt contains the cut tensor of of the head partition whose overall dimension is $2^{23}$ and the annotations of corresponding dimensions. The file is saved using pytorch, one can use torch.load to load the data.
  6. The obtained $2^{21}$ samples for the Sycamore circuits with $n=53$ qubits and $m=20$ cycles and their probabilities and amplitudes are listed in probs.txt file. Notice that the configuration we assigned to all closed qubits are fixed to $\underbrace{0,0,0,\cdots,0}_{32}$, and the open qubit ids are 11, 12, 13, 19, 20, 21, 22, 23, 28, 29, 30, 31, 32, 37, 38, 39, 40, 41, 44, 45, 46.

Notice

We noticed that in our paper arXiv:2103.03074 we have a misprint in the first row of Tab.III, where the amplitude should be |amplitude|. Neverthless, we put the refined table below.

image-20210308101302534

The $2^{21}$ bitstrings with amplitudes and probabilities can be download here.

Owner
Feng Pan
PHD candidate on theoretical physics. Personal interest in learning theory by statistical physics approaches.
Feng Pan
Implementation of ICCV2021(Oral) paper - VMNet: Voxel-Mesh Network for Geodesic-aware 3D Semantic Segmentation

VMNet: Voxel-Mesh Network for Geodesic-Aware 3D Semantic Segmentation Created by Zeyu HU Introduction This work is based on our paper VMNet: Voxel-Mes

HU Zeyu 82 Dec 27, 2022
Invert and perturb GAN images for test-time ensembling

GAN Ensembling Project Page | Paper | Bibtex Ensembling with Deep Generative Views. Lucy Chai, Jun-Yan Zhu, Eli Shechtman, Phillip Isola, Richard Zhan

Lucy Chai 93 Dec 08, 2022
Consistency Regularization for Adversarial Robustness

Consistency Regularization for Adversarial Robustness Official PyTorch implementation of Consistency Regularization for Adversarial Robustness by Jiho

40 Dec 17, 2022
An extremely simple, intuitive, hardware-friendly, and well-performing network structure for LiDAR semantic segmentation on 2D range image. IROS21

FIDNet_SemanticKITTI Motivation Implementing complicated network modules with only one or two points improvement on hardware is tedious. So here we pr

YimingZhao 54 Dec 12, 2022
Semi-supervised semantic segmentation needs strong, varied perturbations

Semi-supervised semantic segmentation using CutMix and Colour Augmentation Implementations of our papers: Semi-supervised semantic segmentation needs

146 Dec 20, 2022
It is a simple library to speed up CLIP inference up to 3x (K80 GPU)

CLIP-ONNX It is a simple library to speed up CLIP inference up to 3x (K80 GPU) Usage Install clip-onnx module and requirements first. Use this trick !

Gerasimov Maxim 93 Dec 20, 2022
HyDiff: Hybrid Differential Software Analysis

HyDiff: Hybrid Differential Software Analysis This repository provides the tool and the evaluation subjects for the paper HyDiff: Hybrid Differential

Yannic Noller 22 Oct 20, 2022
Simple renderer for use with MuJoCo (>=2.1.2) Python Bindings.

Viewer for MuJoCo in Python Interactive renderer to use with the official Python bindings for MuJoCo. Starting with version 2.1.2, MuJoCo comes with n

Rohan P. Singh 62 Dec 30, 2022
Zero-Cost Proxies for Lightweight NAS

Zero-Cost-NAS Companion code for the ICLR2021 paper: Zero-Cost Proxies for Lightweight NAS tl;dr A single minibatch of data is used to score neural ne

SamsungLabs 108 Dec 20, 2022
Recommendation algorithms for large graphs

Fast recommendation algorithms for large graphs based on link analysis. License: Apache Software License Author: Emmanouil (Manios) Krasanakis Depende

Multimedia Knowledge and Social Analytics Lab 27 Jan 07, 2023
Instance-wise Occlusion and Depth Orders in Natural Scenes (CVPR 2022)

Instance-wise Occlusion and Depth Orders in Natural Scenes Official source code. Appears at CVPR 2022 This repository provides a new dataset, named In

27 Dec 27, 2022
PCAM: Product of Cross-Attention Matrices for Rigid Registration of Point Clouds

PCAM: Product of Cross-Attention Matrices for Rigid Registration of Point Clouds PCAM: Product of Cross-Attention Matrices for Rigid Registration of P

valeo.ai 24 May 31, 2022
Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation

Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation Official PyTorch implementation for the paper Look

Rishabh Jangir 20 Nov 24, 2022
The LaTeX and Python code for generating the paper, experiments' results and visualizations reported in each paper is available (whenever possible) in the paper's directory

This repository contains the software implementation of most algorithms used or developed in my research. The LaTeX and Python code for generating the

João Fonseca 3 Jan 03, 2023
Adaptive Attention Span for Reinforcement Learning

Adaptive Transformers in RL Official implementation of Adaptive Transformers in RL In this work we replicate several results from Stabilizing Transfor

100 Nov 15, 2022
Parameterising Simulated Annealing for the Travelling Salesman Problem

Parameterising Simulated Annealing for the Travelling Salesman Problem

Gary Sun 55 Jun 15, 2022
Tensorflow Implementation for "Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition"

Tensorflow Implementation for "Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition" Pre-trained Deep Convo

Ankush Malaker 5 Nov 11, 2022
Neural Oblivious Decision Ensembles

Neural Oblivious Decision Ensembles A supplementary code for anonymous ICLR 2020 submission. What does it do? It learns deep ensembles of oblivious di

25 Sep 21, 2022
MDETR: Modulated Detection for End-to-End Multi-Modal Understanding

MDETR: Modulated Detection for End-to-End Multi-Modal Understanding Website • Colab • Paper This repository contains code and links to pre-trained mod

Aishwarya Kamath 770 Dec 28, 2022