Simulating Sycamore quantum circuits classically using tensor network algorithm.

Overview

Simulating the Sycamore quantum supremacy circuit

This repo contains data we have obtained in simulating the Sycamore quantum supremacy circuits with $n=53$ qubits, $m=20$ cycles using the tensor network method proposed in arXiv:2103.03074.

We plan to release the code soon.

Explanation of data

  1. data/circuit_n53_m20_s0_e0_pABCDCDAB.py is the circuit file which has been download from the Google's data repository for the Sycamore circuits.
  2. data/bipartition_n53_m20_s0_ABCD_s24_simplify_.txt is the initial bipartition of the simplified tensor network corresponding to Sycamore circuit with 53 qubits, 20 cycles, seed 0, elide 0 and ABCDCDAB sequence. There are two lines in the file, the first line indicates the tail partition which includes 21 open qubits, while the second line includes the head partition with 32 closed qubits. The simplification of the tensor network is done by sequentially contracting tensors with 2 or less dimensions.
  3. data/n53_m20_s0_ABCD_s24_simplify_gpulimit_30_edges.txt contains the 23 slicing edges which splits the overall contraction task into $2^{23}$ subtasks, each of which has space complexity $2^{30}$ hence can be contracted using fit into 32G memory.
  4. data/n53_m20_s0_ABCD_s24_simplify_gpulimit_30_ordernew.txt includes the contraction order. For each edge in the contraction order, say $i, j$, the $i$th and $j$th tensor in the head partition will be contracted by tracing out the shared indices. Then the resulting tensor will be put back into the $i$th position.
  5. vector.pt contains the cut tensor of of the head partition whose overall dimension is $2^{23}$ and the annotations of corresponding dimensions. The file is saved using pytorch, one can use torch.load to load the data.
  6. The obtained $2^{21}$ samples for the Sycamore circuits with $n=53$ qubits and $m=20$ cycles and their probabilities and amplitudes are listed in probs.txt file. Notice that the configuration we assigned to all closed qubits are fixed to $\underbrace{0,0,0,\cdots,0}_{32}$, and the open qubit ids are 11, 12, 13, 19, 20, 21, 22, 23, 28, 29, 30, 31, 32, 37, 38, 39, 40, 41, 44, 45, 46.

Notice

We noticed that in our paper arXiv:2103.03074 we have a misprint in the first row of Tab.III, where the amplitude should be |amplitude|. Neverthless, we put the refined table below.

image-20210308101302534

The $2^{21}$ bitstrings with amplitudes and probabilities can be download here.

Owner
Feng Pan
PHD candidate on theoretical physics. Personal interest in learning theory by statistical physics approaches.
Feng Pan
A collection of differentiable SVD methods and also the official implementation of the ICCV21 paper "Why Approximate Matrix Square Root Outperforms Accurate SVD in Global Covariance Pooling?"

Differentiable SVD Introduction This repository contains: The official Pytorch implementation of ICCV21 paper Why Approximate Matrix Square Root Outpe

YueSong 32 Dec 25, 2022
PyTorch implementation of CloudWalk's recent work DenseBody

densebody_pytorch PyTorch implementation of CloudWalk's recent paper DenseBody. Note: For most recent updates, please check out the dev branch. Update

Lingbo Yang 401 Nov 19, 2022
Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space

extrinsic2pyramid Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space Intro A very simple and straightforward modu

JEONG HYEONJIN 106 Dec 28, 2022
Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification

Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification This repository is the official implementation of [Dealing With Misspeci

0 Oct 25, 2021
Aiming at the common training datsets split, spectrum preprocessing, wavelength select and calibration models algorithm involved in the spectral analysis process

Aiming at the common training datsets split, spectrum preprocessing, wavelength select and calibration models algorithm involved in the spectral analysis process, a complete algorithm library is esta

Fu Pengyou 50 Jan 07, 2023
A PyTorch-based open-source framework that provides methods for improving the weakly annotated data and allows researchers to efficiently develop and compare their own methods.

Knodle (Knowledge-supervised Deep Learning Framework) - a new framework for weak supervision with neural networks. It provides a modularization for se

93 Nov 06, 2022
《Truly shift-invariant convolutional neural networks》(2021)

Truly shift-invariant convolutional neural networks [Paper] Authors: Anadi Chaman and Ivan Dokmanić Convolutional neural networks were always assumed

Anadi Chaman 46 Dec 19, 2022
Source code for CVPR2022 paper "Abandoning the Bayer-Filter to See in the Dark"

Abandoning the Bayer-Filter to See in the Dark (CVPR 2022) Paper: https://arxiv.org/abs/2203.04042 (Arxiv version) This code includes the training and

74 Dec 15, 2022
Subgraph Based Learning of Contextual Embedding

SLiCE Self-Supervised Learning of Contextual Embeddings for Link Prediction in Heterogeneous Networks Dataset details: We use four public benchmark da

Pacific Northwest National Laboratory 27 Dec 01, 2022
PyTorch code for JEREX: Joint Entity-Level Relation Extractor

JEREX: "Joint Entity-Level Relation Extractor" PyTorch code for JEREX: "Joint Entity-Level Relation Extractor". For a description of the model and exp

LAVIS - NLP Working Group 50 Dec 01, 2022
Official code for "Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight Transformer. ICCV2021".

Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight Transformer. ICCV2021. Introduction We proposed a novel model training paradi

Lucas 103 Dec 14, 2022
Automated Hyperparameter Optimization Competition

QQ浏览器2021AI算法大赛 - 自动超参数优化竞赛 ACM CIKM 2021 AnalyticCup 在信息流推荐业务场景中普遍存在模型或策略效果依赖于“超参数”的问题,而“超参数"的设定往往依赖人工经验调参,不仅效率低下维护成本高,而且难以实现更优效果。因此,本次赛题以超参数优化为主题,从真

20 Dec 09, 2021
DataCLUE: 国内首个以数据为中心的AI测评(含模型分析报告)

DataCLUE: A Benchmark Suite for Data-centric NLP You can get the english version of README. 以数据为中心的AI测评(DataCLUE) 内容导引 章节 描述 简介 介绍以数据为中心的AI测评(DataCLUE

CLUE benchmark 135 Dec 22, 2022
Si Adek Keras is software VR dangerous object detection.

Si Adek Python Keras Sistem Informasi Deteksi Benda Berbahaya Keras Python. Version 1.0 Developed by Ananda Rauf Maududi. Developed date: 24 November

Ananda Rauf 1 Dec 21, 2021
A Tensorfflow implementation of Attend, Infer, Repeat

Attend, Infer, Repeat: Fast Scene Understanding with Generative Models This is an unofficial Tensorflow implementation of Attend, Infear, Repeat (AIR)

Adam Kosiorek 82 May 27, 2022
Official git for "CTAB-GAN: Effective Table Data Synthesizing"

CTAB-GAN This is the official git paper CTAB-GAN: Effective Table Data Synthesizing. The paper is published on Asian Conference on Machine Learning (A

30 Dec 26, 2022
RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

184 Jan 04, 2023
Homepage of paper: Paint Transformer: Feed Forward Neural Painting with Stroke Prediction, ICCV 2021.

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [PaddlePaddle Implementation] Homepage of paper: Paint Transformer: Fee

442 Dec 16, 2022
Instantaneous Motion Generation for Robots and Machines.

Ruckig Instantaneous Motion Generation for Robots and Machines. Ruckig generates trajectories on-the-fly, allowing robots and machines to react instan

Berscheid 374 Dec 23, 2022
DNA-RECON { Automatic Web Reconnaissance Tool }

ABOUT TOOL : DNA-RECON is an automatic web reconnaissance tool written in python. This tool made for reconnaissance and information gathering with an

NIKUNJ BHATT 25 Aug 11, 2021