So-ViT: Mind Visual Tokens for Vision Transformer

Related tags

Deep LearningSo-ViT
Overview

So-ViT: Mind Visual Tokens for Vision Transformer

      

Introduction

This repository contains the source code under PyTorch framework and models trained on ImageNet-1K dataset for the following paper:

@articles{So-ViT,
    author = {Jiangtao Xie, Ruiren Zeng, Qilong Wang, Ziqi Zhou, Peihua Li},
    title = {So-ViT: Mind Visual Tokens for Vision Transformer},
    booktitle = {arXiv:2104.10935},
    year = {2021}
}

The Vision Transformer (ViT) heavily depends on pretraining using ultra large-scale datasets (e.g. ImageNet-21K or JFT-300M) to achieve high performance, while significantly underperforming on ImageNet-1K if trained from scratch. We propose a novel So-ViT model toward addressing this problem, by carefully considering the role of visual tokens.

Above all, for classification head, the ViT only exploits class token while entirely neglecting rich semantic information inherent in high-level visual tokens. Therefore, we propose a new classification paradigm, where the second-order, cross-covariance pooling of visual tokens is combined with class token for final classification. Meanwhile, a fast singular value power normalization is proposed for improving the second-order pooling.

Second, the ViT employs the naïve method of one linear projection of fixed-size image patches for visual token embedding, lacking the ability to model translation equivariance and locality. To alleviate this problem, we develop a light-weight, hierarchical module based on off-the-shelf convolutions for visual token embedding.

Classification results

Classification results (single crop 224x224, %) on ImageNet-1K validation set

Network Top-1 Accuracy Pre-trained models
Paper reported Upgrade GoogleDrive BaiduCloud
So-ViT-7 76.2 76.8 Coming soon Coming soon
So-ViT-10 77.9 78.7 Coming soon Coming soon
So-ViT-14 81.8 82.3 Coming soon Coming soon
So-ViT-19 82.4 82.8 Coming soon Coming soon

Installation and Usage

  1. Install PyTorch (>=1.6.0)
  2. Install timm (==0.3.4)
  3. pip install thop
  4. type git clone https://github.com/jiangtaoxie/So-ViT
  5. prepare the dataset as follows
.
├── train
│   ├── class1
│   │   ├── class1_001.jpg
│   │   ├── class1_002.jpg
|   |   └── ...
│   ├── class2
│   ├── class3
│   ├── ...
│   ├── ...
│   └── classN
└── val
    ├── class1
    │   ├── class1_001.jpg
    │   ├── class1_002.jpg
    |   └── ...
    ├── class2
    ├── class3
    ├── ...
    ├── ...
    └── classN

for training from scracth

sh model_name.sh  # model_name = {So_vit_7/10/14/19}

Acknowledgment

pytorch: https://github.com/pytorch/pytorch

timm: https://github.com/rwightman/pytorch-image-models

T2T-ViT: https://github.com/yitu-opensource/T2T-ViT

Contact

If you have any questions or suggestions, please contact me

[email protected]

Owner
Jiangtao Xie
Jiangtao Xie
Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships.

feature-set-comp Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships. Reposito

Trent Henderson 7 May 25, 2022
Vehicle detection using machine learning and computer vision techniques for Udacity's Self-Driving Car Engineer Nanodegree.

Vehicle Detection Video demo Overview Vehicle detection using these machine learning and computer vision techniques. Linear SVM HOG(Histogram of Orien

hata 1.1k Dec 18, 2022
Source Code for Simulations in the Publication "Can the brain use waves to solve planning problems?"

Code for Simulations in the Publication Can the brain use waves to solve planning problems? Installing Required Python Packages Please use Python vers

EMD Group 2 Jul 01, 2022
Codes for paper "Towards Diverse Paragraph Captioning for Untrimmed Videos". CVPR 2021

Towards Diverse Paragraph Captioning for Untrimmed Videos This repository contains PyTorch implementation of our paper Towards Diverse Paragraph Capti

Yuqing Song 61 Oct 11, 2022
SemiNAS: Semi-Supervised Neural Architecture Search

SemiNAS: Semi-Supervised Neural Architecture Search This repository contains the code used for Semi-Supervised Neural Architecture Search, by Renqian

Renqian Luo 21 Aug 31, 2022
[NeurIPS 2021] “Improving Contrastive Learning on Imbalanced Data via Open-World Sampling”,

Improving Contrastive Learning on Imbalanced Data via Open-World Sampling Introduction Contrastive learning approaches have achieved great success in

VITA 24 Dec 17, 2022
Face Recognition Attendance Project

Face-Recognition-Attendance-Project In This Project You will learn how to mark attendance using face recognition, Hello Guys This is Gautam Kumar, Thi

Gautam Kumar 1 Dec 03, 2022
An open source object detection toolbox based on PyTorch

MMDetection is an open source object detection toolbox based on PyTorch. It is a part of the OpenMMLab project.

Bo Chen 24 Dec 28, 2022
Real-Time SLAM for Monocular, Stereo and RGB-D Cameras, with Loop Detection and Relocalization Capabilities

ORB-SLAM2 Authors: Raul Mur-Artal, Juan D. Tardos, J. M. M. Montiel and Dorian Galvez-Lopez (DBoW2) 13 Jan 2017: OpenCV 3 and Eigen 3.3 are now suppor

Raul Mur-Artal 7.8k Dec 30, 2022
Beyond imagenet attack (accepted by ICLR 2022) towards crafting adversarial examples for black-box domains.

Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains (ICLR'2022) This is the Pytorch code for our paper Beyond ImageNet

Alibaba-AAIG 37 Nov 23, 2022
Official PyTorch implementation of StyleGAN3

Modified StyleGAN3 Repo Changes Made tied to python 3.7 syntax .jpgs instead of .pngs for training sample seeds to recreate the 1024 training grid wit

Derrick Schultz (he/him) 83 Dec 15, 2022
The Power of Scale for Parameter-Efficient Prompt Tuning

The Power of Scale for Parameter-Efficient Prompt Tuning Implementation of soft embeddings from https://arxiv.org/abs/2104.08691v1 using Pytorch and H

Kip Parker 208 Dec 30, 2022
An implementation of EWC with PyTorch

EWC.pytorch An implementation of Elastic Weight Consolidation (EWC), proposed in James Kirkpatrick et al. Overcoming catastrophic forgetting in neural

Ryuichiro Hataya 166 Dec 22, 2022
Fast and customizable reconnaissance workflow tool based on simple YAML based DSL.

Fast and customizable reconnaissance workflow tool based on simple YAML based DSL, with support of notifications and distributed workload of that work

Américo Júnior 3 Mar 11, 2022
Code for paper 'Hand-Object Contact Consistency Reasoning for Human Grasps Generation' at ICCV 2021

GraspTTA Hand-Object Contact Consistency Reasoning for Human Grasps Generation (ICCV 2021). Project Page with Videos Demo Quick Results Visualization

Hanwen Jiang 47 Dec 09, 2022
ICRA 2021 "Towards Precise and Efficient Image Guided Depth Completion"

PENet: Precise and Efficient Depth Completion This repo is the PyTorch implementation of our paper to appear in ICRA2021 on "Towards Precise and Effic

232 Dec 25, 2022
Vignette is a face tracking software for characters using osu!framework.

Vignette is a face tracking software for characters using osu!framework. Unlike most solutions, Vignette is: Made with osu!framework, the game framewo

Vignette 412 Dec 28, 2022
Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering (NAACL 2021)

Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering Abstract In open-domain question answering (QA), retrieve-and-read mec

Clova AI Research 34 Apr 13, 2022
Pytorch library for seismic data augmentation

Pytorch library for seismic data augmentation

Artemii Novoselov 27 Nov 22, 2022