CellRank's reproducibility repository.

Overview

CellRank's reproducibility repository

We believe that reproducibility is key and have made it as simple as possible to reproduce our results. Please either open an issue or contact as at [email protected] should you experience difficulties reproducing any result.

Manuscript, code and data

CellRank is published in Nature Methods and the software package can be found at our main website, cellrank.org. Raw published data is available from the Gene Expression Omnibus (GEO) under accession codes:

Processed data, including spliced and unspliced count abundances, is available on figshare. To ease reproducibility, our data examples can also be accessed through CellRank's dataset interface.

Navigating this repository

We've organized this repository along the categories below. For each item, you can click the link under nbviewer to open the notebook in the browser using nbviewer. There is no 1-1 mapping from figures to notebooks - some notebooks produce panels for several figures, and some figures contain panels from several notebooks. The tables we provide here make the connection between figures and notebooks explicit. At the top of each notebook, we indicate the package versions we use.

Results

Main Figures
Figure nbviewer Notebook Path
Fig. 1 link path
Fig. 2 link path
Fig. 3 link path
Fig. 4 link path
Fig. 5 Palantir link path
Fig. 5 STEMNET link path
Fig. 5 Velocyto link path
Fig. 5 FateID link path
Fig. 6 link path
Extended Data Figures
Figure nbviewer Notebook Path
Extended Data Fig. 1 NA (toy data) NA (toy data)
Extended Data Fig. 2 link path
Extended Data Fig. 3 link path
Extended Data Fig. 4 link path
Extended Data Fig. 5 link path
Extended Data Fig. 6 link path
Extended Data Fig. 7 link path
Extended Data Fig. 8 link path
Extended Data Fig. 9 link path
Extended Data Fig. 10 link path
Supplementary Figures
Figure nbviewer Notebook Path
Supplementary Fig. 1 link path
Supplementary Fig. 2 link path
Supplementary Fig. 3 link path
Supplementary Fig. 4 link path
Supplementary Fig. 5 link path
Supplementary Fig. 6 link path
Supplementary Fig. 7 link path
Supplementary Fig. 8 link path
Supplementary Fig. 9 link path
Supplementary Fig. 10 link path
Supplementary Fig. 11 link path
Supplementary Fig. 12 link1 link2 path1 path2
Supplementary Fig. 13 link path
Supplementary Fig. 14 link path
Supplementary Fig. 15 link path
Supplementary Fig. 16 link path
Supplementary Fig. 17 NA (microscopy results) NA (microscopy results)
Supplementary Tables
Table nbviewer Notebook Path
Supplementary Tab. 1 link path
Supplementary Tab. 2 link path
Supplementary Tab. 3 link path
Owner
Theis Lab
Institute of Computational Biology
Theis Lab
Scheduling BilinearRewards

Scheduling_BilinearRewards Requirement Python 3 =3.5 Structure main.py This file includes the main function. For getting the results in Figure 1, ple

junghun.kim 0 Nov 25, 2021
Pytorch Implementation of Interaction Networks for Learning about Objects, Relations and Physics

Interaction-Network-Pytorch Pytorch Implementraion of Interaction Networks for Learning about Objects, Relations and Physics. Interaction Network is a

117 Nov 05, 2022
[ICCV 2021] Excavating the Potential Capacity of Self-Supervised Monocular Depth Estimation

EPCDepth EPCDepth is a self-supervised monocular depth estimation model, whose supervision is coming from the other image in a stereo pair. Details ar

Rui Peng 110 Dec 23, 2022
How the Deep Q-learning method works and discuss the new ideas that makes the algorithm work

Deep Q-Learning Recommend papers The first step is to read and understand the method that you will implement. It was first introduced in a 2013 paper

1 Jan 25, 2022
[ICCV 2021 Oral] PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers

PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers Created by Xumin Yu*, Yongming Rao*, Ziyi Wang, Zuyan Liu, Jiwen Lu, Jie Zhou

Xumin Yu 317 Dec 26, 2022
Deep ViT Features as Dense Visual Descriptors

dino-vit-features [paper] [project page] Official implementation of the paper "Deep ViT Features as Dense Visual Descriptors". We demonstrate the effe

Shir Amir 113 Dec 24, 2022
Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation

Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation This paper has been accepted and early accessed

Yun Liu 39 Sep 20, 2022
LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image.

This project is based on ultralytics/yolov3. LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image. The related paper is avai

26 Dec 13, 2022
Python code for the paper How to scale hyperparameters for quickshift image segmentation

How to scale hyperparameters for quickshift image segmentation Python code for the paper How to scale hyperparameters for quickshift image segmentatio

0 Jan 25, 2022
Python3 Implementation of (Subspace Constrained) Mean Shift Algorithm in Euclidean and Directional Product Spaces

(Subspace Constrained) Mean Shift Algorithms in Euclidean and/or Directional Product Spaces This repository contains Python3 code for the mean shift a

Yikun Zhang 0 Oct 19, 2021
"Domain Adaptive Semantic Segmentation without Source Data" (ACM MM 2021)

LDBE Pytorch implementation for two papers (the paper will be released soon): "Domain Adaptive Semantic Segmentation without Source Data", ACM MM2021.

benfour 16 Sep 28, 2022
TANL: Structured Prediction as Translation between Augmented Natural Languages

TANL: Structured Prediction as Translation between Augmented Natural Languages Code for the paper "Structured Prediction as Translation between Augmen

98 Dec 15, 2022
nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures.

nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures. Here you will find the scripts necessary to produce th

Jesse Willis 0 Jan 20, 2022
PyTorch implementation of NIPS 2017 paper Dynamic Routing Between Capsules

Dynamic Routing Between Capsules - PyTorch implementation PyTorch implementation of NIPS 2017 paper Dynamic Routing Between Capsules from Sara Sabour,

Adam Bielski 475 Dec 24, 2022
Towards the D-Optimal Online Experiment Design for Recommender Selection (KDD 2021)

Towards the D-Optimal Online Experiment Design for Recommender Selection (KDD 2021) Contact 0 Jan 11, 2022

Code for "Learning to Segment Rigid Motions from Two Frames".

rigidmask Code for "Learning to Segment Rigid Motions from Two Frames". ** This is a partial release with inference and evaluation code.

Gengshan Yang 157 Nov 21, 2022
Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals

LapDepth-release This repository is a Pytorch implementation of the paper "Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals" M

Minsoo Song 205 Dec 30, 2022
Fight Recognition from Still Images in the Wild @ WACVW2022, Real-world Surveillance Workshop

Fight Detection from Still Images in the Wild Detecting fights from still images is an important task required to limit the distribution of social med

Şeymanur Aktı 10 Nov 09, 2022
Its a Plant Leaf Disease Detection System based on Machine Learning.

My_Project_Code Its a Plant Leaf Disease Detection System based on Machine Learning. I have used Tomato Leaves Dataset from kaggle. This system detect

Sanskriti Sidola 3 Jun 15, 2022
Adversarial Reweighting for Partial Domain Adaptation

Adversarial Reweighting for Partial Domain Adaptation Code for paper "Xiang Gu, Xi Yu, Yan Yang, Jian Sun, Zongben Xu, Adversarial Reweighting for Par

12 Dec 01, 2022