ACL'2021: LM-BFF: Better Few-shot Fine-tuning of Language Models

Overview

LM-BFF (Better Few-shot Fine-tuning of Language Models)

This is the implementation of the paper Making Pre-trained Language Models Better Few-shot Learners. LM-BFF is short for better few-shot fine-tuning of language models.

Quick links

Overview

In this work we present LM-BFF, a suite of simple and complementary techniques for fine-tuning pre-trained language models on a small number of training examples. Our approach includes:

  1. Prompt-based fine-tuning together with a novel pipeline for automating prompt generation.
  2. A refined strategy for incorporating demonstrations into context.

You can find more details of this work in our paper.

Requirements

To run our code, please install all the dependency packages by using the following command:

pip install -r requirements.txt

NOTE: Different versions of packages (like pytorch, transformers, etc.) may lead to different results from the paper. However, the trend should still hold no matter what versions of packages you use.

Prepare the data

We pack the original datasets (SST-2, SST-5, MR, CR, MPQA, Subj, TREC, CoLA, MNLI, SNLI, QNLI, RTE, MRPC, QQP, STS-B) here. Please download it and extract the files to ./data/original, or run the following commands:

cd data
bash download_dataset.sh

Then use the following command (in the root directory) to generate the few-shot data we need:

python tools/generate_k_shot_data.py

See tools/generate_k_shot_data.py for more options. For results in the paper, we use the default options: we take K=16 and take 5 different seeds of 13, 21, 42, 87, 100. The few-shot data will be generated to data/k-shot. In the directory of each dataset, there will be folders named as $K-$SEED indicating different dataset samples. You can use the following command to check whether the generated data are exactly the same as ours:

cd data/k-shot
md5sum -c checksum

NOTE: During training, the model will generate/load cache files in the data folder. If your data have changed, make sure to clean all the cache files (starting with "cache").

Run LM-BFF

Quick start

Our code is built on transformers and we use its 3.4.0 version. Other versions of transformers might cause unexpected errors.

Before running any experiments, create the result folder by mkdir result to save checkpoints. Then you can run our code with the following example:

python run.py \
    --task_name SST-2 \
    --data_dir data/k-shot/SST-2/16-42 \
    --overwrite_output_dir \
    --do_train \
    --do_eval \
    --do_predict \
    --evaluate_during_training \
    --model_name_or_path roberta-large \
    --few_shot_type prompt-demo \
    --num_k 16 \
    --max_steps 1000 \
    --eval_steps 100 \
    --per_device_train_batch_size 2 \
    --learning_rate 1e-5 \
    --num_train_epochs 0 \
    --output_dir result/tmp \
    --seed 42 \
    --template "*cls**sent_0*_It_was*mask*.*sep+*" \
    --mapping "{'0':'terrible','1':'great'}" \
    --num_sample 16 \

Most arguments are inherited from transformers and are easy to understand. We further explain some of the LM-BFF's arguments:

  • few_shot_type: There are three modes
    • finetune: Standard fine-tuning
    • prompt: Prompt-based fine-tuning.
    • prompt-demo: Prompt-based fine-tuning with demonstrations.
  • num_k: Number of training instances for each class. We take num_k=16 in our paper. This argument is mainly used for indexing logs afterwards (because the training example numbers are actually decided by the data split you use).
  • template: Template for prompt-based fine-tuning. We will introduce the template format later.
  • mapping: Label word mapping for prompt-based fine-tuning. It is a string of dictionary indicating the mapping from label names to label words. NOTE: For RoBERTa, the model will automatically add space before the word. See the paper appendix for details.
  • num_sample: When using demonstrations during inference, the number of samples for each input query. Say num_sample=16, then we sample 16 different sets of demonstrations for one input, do the forward seperately, and average the logits for all 16 samples as the final prediction.

Also, this codebase supports BERT-series and RoBERTa-series pre-trained models in Huggingface's transformers. You can check Huggingface's website for available models and pass models with a "bert" or "roberta" in their names to --model_name_or_path. Some examples would be bert-base-uncased, bert-large-uncased, roberta-base, roberta-large, etc.

To easily run our experiments, you can also use run_experiment.sh (this command runs prompt-based fine-tuning with demonstrations, no filtering, manual prompt):

TAG=exp TYPE=prompt-demo TASK=SST-2 BS=2 LR=1e-5 SEED=42 MODEL=roberta-large bash run_experiment.sh

We have already defined the templates and label word mappings in it, so you only need manipulate several hyper-parameters and TAG (you can use whatever tag you want and it just makes finding results easier). See run_experiment.sh for more options of these environment variables. Besides, you can add extra arguments by

TAG=exp TYPE=prompt-demo TASK=SST-2 BS=2 LR=1e-5 SEED=42 MODEL=roberta-large bash run_experiment.sh "--output_dir result/exp --max_seq_length 512"

Experiments with multiple runs

To carry out experiments with multiple data splits, as the evaluation protocol detailed in $3.3 of our paper (grid-search for each seed and aggregate the results over 5 different seeds), you can use the following scripts:

for seed in 13 21 42 87 100
do
    for bs in 2 4 8
    do
        for lr in 1e-5 2e-5 5e-5
        do
            TAG=exp \
            TYPE=prompt-demo \
            TASK=SST-2 \
            BS=$bs \
            LR=$lr \
            SEED=$seed \
            MODEL=roberta-large \
            bash run_experiment.sh
        done
    done
done

All the results will be stored in ./log. To gather all the results, run the following command:

python tools/gather_result.py --condition "{'tag': 'exp', 'task_name': 'sst-2', 'few_shot_type': 'prompt-demo'}"

Then the program will find all the trials that satisfy the condition in ./log, and print the mean/std of the final results. Note that the task names are all lower-cased and if the task has more than one metric, you need to specify the major metric (used for taking the best validation trial) in the name (e.g., mnli, mnli-mm, mrpc/acc, mrpc/f1, qqp/acc, qqp/f1, sts-b/pearson, sts-b/spearman).

Using demonstrations with filtering

To use the filtering mechanism when using demonstrations, we need to first generate Sentence-BERT embeddings. To generate embeddings for datasets in our paper, you can directly run

bash tools/get_sbert_embedding.sh roberta-large

roberta-large can also be replaced by bert-base, bert-large, roberta-base and distilbert-base (see Sentence Transformers for details). See tools/get_sbert_embedding.sh and tools/get_sbert_embedding.py if you want to add more datasets.

After generating the embeddings (embeddings are saved as numpy files in the data folders), we can run the following commands to do prompt-based fine-tuning with demonstrations with filtering:

TAG=exp TYPE=prompt-demo TASK=SST-2 BS=2 LR=1e-5 SEED=42 MODEL=roberta-large bash run_experiment.sh "--demo_filter --demo_filter_model sbert-roberta-large"

Automatically searched prompt

We provide our automatic search results in auto_template and auto_label_mapping. There are three types of files:

  • SST-2/16-42.txt: Initial search results for SST-2 dataset, K=16 and SEED=42.
  • SST-2/16-42.sort.txt: Do prompt-based fine-tuning on initial results and sort them based on dev set performance.
  • SST-2/16-42.score.txt: Same as above, but with dev set scores.

To use the best automatic template (auto-T in the paper), use the following command:

TAG=exp TYPE=prompt-demo TASK=SST-2 BS=2 LR=1e-5 SEED=42 MODEL=roberta-large bash run_experiment.sh "--template_path auto_template/SST-2/16-42.sort.txt --template_id 0"

You can also use the i-th automatic result by specifying different template_id.

Similarly, to use automatic label (auto-L in the paper), use the following command:

TAG=exp TYPE=prompt-demo TASK=SST-2 BS=2 LR=1e-5 SEED=42 MODEL=roberta-large bash run_experiment.sh "--mapping_path auto_label_mapping/SST-2/16-42.sort.txt --mapping_id 0"

NOTE: Make sure to use the corresponding automatic search results with different data split seeds.

Our final results (LM-BFF) take prompt-based fine-tuning with demonstrations, filtering and automatic template, for example:

for seed in 13 21 42 87 100
do
    for bs in 2 4 8
    do
        for lr in 1e-5 2e-5 5e-5
        do
            TAG=LM-BFF \
            TYPE=prompt-demo \
            TASK=SST-2 \
            BS=$bs \
            LR=$lr \
            SEED=$seed \
            MODEL=roberta-large \
            bash run_experiment.sh "--template_path auto_template/SST-2/16-$seed.sort.txt --template_id 0 --demo_filter --demo_filter_model sbert-roberta-large"
        done
    done
done

python tools/gather_result.py --condition "{'tag': 'LM-BFF', 'task_name': 'sst-2', 'few_shot_type': 'prompt-demo'}"

Search for automatic templates

If you want to try automatically generating templates by yourself, here are the instructions. Note that it is an extremely long process :)

To get automatic templates, we first generate template candidates by using T5:

python tools/generate_template.py \
    --output_dir my_auto_template \
    --task_name SST-2 \
    --seed 13 21 42 87 100 \
    --t5_model t5-3b \
    --beam 100

Where --t5_model specifies the pre-trained T5 checkpoint to use and --beam specifies the beam search width. Note that t5-3b model will take approximately 15GB GPU memory, and if your GPU does not support it, you can try smaller T5 models (e.g., t5-base).

Then we do prompt-based fine-tuning of all the templates

for template_id in {0..99}
do
    for seed in 13 21 42 87 100
    do
        # To save time, we fix these hyper-parameters
        bs=8
        lr=1e-5

        # Since we only use dev performance here, use --no_predict to skip testing
        TAG=exp-template \
        TYPE=prompt \
        TASK=SST-2 \
        BS=$bs \
        LR=$lr \
        SEED=$seed \
        MODEL=roberta-large \
        bash run_experiment.sh "--template_path my_auto_template/SST-2/16-$seed.txt --template_id $template_id --no_predict"
    done
done

... and sort them based on dev set performance:

python tools/sort_template.py --condition "{'tag': 'exp-template', 'task_name': 'sst-2'}" --template_dir my_auto_template

The sorted results will be saved in my_auto_template, with the same format as described in Automatically searched prompt.

Search for automatic label word mappings

Similar to the process of automatic template search, we first generate candidate label word mappings by running:

bash tools/run_generate_labels.sh

You can modify the options in tools/run_generate_labels.sh to run this for different datasets or save mappings to different directories. After running the generation, the candidate label mappings will be saved in my_auto_label_mapping/manual_template.

Then we do prompt-based fine-tuning of all the mappings by:

for mapping_id in {0..99}
do
    for seed in 13 21 42 87 100
    do
        # To save time, we fix these hyper-parameters
        bs=8
        lr=1e-5

        # Since we only use dev performance here, use --no_predict to skip testing
        TAG=exp-mapping \
        TYPE=prompt \
        TASK=SST-2 \
        BS=$bs \
        LR=$lr \
        SEED=$seed \
        MODEL=roberta-large \
        bash run_experiment.sh "--mapping_path my_auto_label_mapping/manual_template/SST-2/16-$seed.txt --mapping_id $mapping_id --no_predict"
    done
done

... and sort them based on dev set performance:

python tools/sort_mapping.py --condition "{'tag': 'exp-mapping', 'task_name': 'sst-2'}" --mapping_dir my_auto_label_mapping/manual_template

The sorted results will be saved in my_auto_label_mapping/manual_template, with the same format as described in Automatically searched prompt.

Auto T + L: We can also do a joint search of templates and label word mappings following these steps:

  1. First, do the automatic template search following Search for automatic templates.
  2. The following steps are similar to automatic label mapping except a few arguments. When running tools/run_generate_labels.sh, change LOAD_TEMPLATES to true in it and the template + mapping candidates will be written in my_auto_label_mapping/auto_template
  3. For the following fine-tuning, change --mapping_path and --mapping_id to --prompt_path and --prompt_id.
  4. In the end, for re-ranking all the prompts, change tools/sort_mapping.py to tools/sort_prompt.py to get the final lists.

Ensemble model

First we need to train models with different templates:

mkdir ensemble_predict_results
for template_id in {0..19} # Use top 20 templates
do
    array_id=0
    for seed in 13 21 42 87 100
    do
        for bs in 2 4 8
        do
            for lr in 1e-5 2e-5 5e-5
            do
                TAG=exp-ensemble \
                TYPE=prompt-demo \
                TASK=SST-2 \
                BS=$bs \
                LR=$lr \
                SEED=$seed \
                MODEL=roberta-large \
                bash run_experiment.sh "--template_path auto_template/SST-2/16-$seed.sort.txt --template_id $template_id --model_id $template_id --array_id $array_id --save_logit --save_logit_dir ensemble_predict_results"

                array_id=$(expr $array_id + 1)
            done
        done
    done
done

Looks a little complicated? It's actually pretty easy to understand: --model_id and --array_id is used to distinguish different runs, and --save_logit tells the program to save the prediction results for ensemble.

After finishing the experiments, use the following command to get the ensemble results:

python tools/ensemble.py --condition "{'tag': 'exp-ensemble', 'task_name': 'sst-2', 'few_shot_type': 'prompt-demo'}" --n_models 20

where --n_models specify how many models you want to use for ensemble (should be kept the same as the number of templates you use in experiments).

Zero-shot experiments

It's easy to run zero-shot experiments: just add the --no_train argument:

TAG=zero-shot TYPE=prompt TASK=SST-2 BS=2 LR=1e-5 SEED=42 MODEL=roberta-large bash run_experiment.sh "--no_train"

To do "GPT-3 style" in-context learning:

TAG=gpt3-in-context TYPE=prompt-demo TASK=SST-2 BS=2 LR=1e-5 SEED=42 MODEL=roberta-large bash run_experiment.sh "--no_train --num_sample 1 --gpt3_in_context_head --gpt3_in_context_num 32 --truncate_head --use_full_length"

How to design your own templates

Here are two template examples:

For SST-2: *cls**sent_0*_It_was*mask*.*sep+* => [CLS] {S0} It was [MASK]. [SEP]

For MNLI: *cls**sent-_0*?*mask*,*+sentl_1**sep+* => [CLS] {S0}? [MASK], {S1} [SEP]

The template is composed of special tokens and variables (surrounded by *) and text (e.g., It_was, where space is replaced by _). Special tokens and variables contain:

  • *cls*, *sep*, *sep+* and *mask*: Special tokens of CLS, SEP and MASK (different for different pre-trained models and tokenizers). *sep+* means the contents before and after this token have different segment embeddings (only for BERT).
  • *sent_i*: The i-th sentence.
  • *sent-_i*: The i-th sentence, discarding the last character.
  • *sentl_i*: The i-th sentence, lower-casing the first letter.
  • *sentl-_i*: The i-th sentence, discarding the last character and lower-casing the first letter.
  • *+sent_i*: The i-th sentence, adding an extra space at the beginning.
  • *+sentl_i*: The i-th sentence, adding an extra space at the beginning and lower-casing the first letter.

Bugs or questions?

If you have any questions related to the code or the paper, feel free to email Tianyu ([email protected]). If you encounter any problems when using the code, or want to report a bug, you can open an issue. Please try to specify the problem with details so we can help you better and quicker!

Citation

Please cite our paper if you use LM-BFF in your work:

@inproceedings{gao2021making,
   title={Making Pre-trained Language Models Better Few-shot Learners},
   author={Gao, Tianyu and Fisch, Adam and Chen, Danqi},
   booktitle={Association for Computational Linguistics (ACL)},
   year={2021}
}
Owner
Princeton Natural Language Processing
Princeton Natural Language Processing
Official tensorflow implementation for CVPR2020 paper “Learning to Cartoonize Using White-box Cartoon Representations”

Tensorflow implementation for CVPR2020 paper “Learning to Cartoonize Using White-box Cartoon Representations”.

3.7k Dec 31, 2022
Machine learning framework for both deep learning and traditional algorithms

NeoML is an end-to-end machine learning framework that allows you to build, train, and deploy ML models. This framework is used by ABBYY engineers for

NeoML 704 Dec 27, 2022
Linescanning - Package for (pre)processing of anatomical and (linescanning) fMRI data

line scanning repository This repository contains all of the tools used during the acquisition and postprocessing of line scanning data at the Spinoza

Jurjen Heij 4 Sep 14, 2022
Pytorch implementation of Learning Rate Dropout.

Learning-Rate-Dropout Pytorch implementation of Learning Rate Dropout. Paper Link: https://arxiv.org/pdf/1912.00144.pdf Train ResNet-34 for Cifar10: r

42 Nov 25, 2022
Intent parsing and slot filling in PyTorch with seq2seq + attention

PyTorch Seq2Seq Intent Parsing Reframing intent parsing as a human - machine translation task. Work in progress successor to torch-seq2seq-intent-pars

Sean Robertson 160 Jan 07, 2023
The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

Sun Yi 201 Nov 21, 2022
Generative code template for PixelBeasts 10k NFT project.

generator-template Generative code template for combining transparent png attributes into 10,000 unique images. Used for the PixelBeasts 10k NFT proje

Yohei Nakajima 9 Aug 24, 2022
Pytorch implementation for the EMNLP 2020 (Findings) paper: Connecting the Dots: A Knowledgeable Path Generator for Commonsense Question Answering

Path-Generator-QA This is a Pytorch implementation for the EMNLP 2020 (Findings) paper: Connecting the Dots: A Knowledgeable Path Generator for Common

Peifeng Wang 33 Dec 05, 2022
An original implementation of "MetaICL Learning to Learn In Context" by Sewon Min, Mike Lewis, Luke Zettlemoyer and Hannaneh Hajishirzi

MetaICL: Learning to Learn In Context This includes an original implementation of "MetaICL: Learning to Learn In Context" by Sewon Min, Mike Lewis, Lu

Meta Research 141 Jan 07, 2023
A minimal TPU compatible Jax implementation of NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

NeRF Minimal Jax implementation of NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. Result of Tiny-NeRF RGB Depth

Soumik Rakshit 11 Jul 24, 2022
A working implementation of the Categorical DQN (Distributional RL).

Categorical DQN. Implementation of the Categorical DQN as described in A distributional Perspective on Reinforcement Learning. Thanks to @tudor-berari

Florin Gogianu 98 Sep 20, 2022
Python parser for DTED data.

DTED Parser This is a package written in pure python (with help from numpy) to parse and investigate Digital Terrain Elevation Data (DTED) files. This

Ben Bonenfant 12 Dec 18, 2022
a morph transfer UGATIT for image translation.

Morph-UGATIT a morph transfer UGATIT for image translation. Introduction 中文技术文档 This is Pytorch implementation of UGATIT, paper "U-GAT-IT: Unsupervise

55 Nov 14, 2022
The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding"

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

AutoML Research 64 Dec 17, 2022
🛠️ Tools for Transformers compression using Lightning ⚡

Bert-squeeze is a repository aiming to provide code to reduce the size of Transformer-based models or decrease their latency at inference time.

Jules Belveze 66 Dec 11, 2022
This is an official implementation for the WTW Dataset in "Parsing Table Structures in the Wild " on table detection and table structure recognition.

WTW-Dataset This is an official implementation for the WTW Dataset in "Parsing Table Structures in the Wild " on ICCV 2021. Here, you can download the

109 Dec 29, 2022
Lightweight stereo matching network based on MobileNetV1 and MobileNetV2

MobileStereoNet: Towards Lightweight Deep Networks for Stereo Matching

Cognitive Systems Research Group 139 Nov 30, 2022
Dataset and Code for the paper "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021), and "Depth-only Object Tracking" (BMVC2021)

DeT and DOT Code and datasets for "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021) "Depth-only Object Tracking" (BMVC2021) @InProceedings

Yan Song 55 Dec 15, 2022
Google Recaptcha solver.

byerecaptcha - Google Recaptcha solver. Model and some codes takes from embium's repository -Installation- pip install byerecaptcha -How to use- from

Vladislav Zenkevich 21 Dec 19, 2022
Automatic number plate recognition using tech: Yolo, OCR, Scene text detection, scene text recognation, flask, torch

Automatic Number Plate Recognition Automatic Number Plate Recognition (ANPR) is the process of reading the characters on the plate with various optica

Meftun AKARSU 52 Dec 22, 2022