Rocket-recycling with Reinforcement Learning

Overview

Rocket-recycling with Reinforcement Learning

Developed by: Zhengxia Zou

IMAGE ALT TEXT HERE

I have long been fascinated by the recovery process of SpaceX rockets. In this mini-project, I worked on an interesting question that whether we can address this problem with simple reinforcement learning.

I tried on two tasks: hovering and landing. The rocket is simplified into a rigid body on a 2D plane with a thin rod, considering the basic cylinder dynamics model and air resistance proportional to the velocity.

Their reward functions are quite straightforward.

  1. For the hovering tasks: the step-reward is given based on two factors:

    1. the distance between the rocket and the predefined target point - the closer they are, the larger reward will be assigned.
    2. the angle of the rocket body (the rocket should stay as upright as possible)
  2. For the landing task: the step-reward is given based on three factors:

    1. and 2) are the same as the hovering task
    2. Speed and angle at the moment of contact with the ground - when the touching-speed are smaller than a safe threshold and the angle is close to 90 degrees (upright), we see it as a successful landing and a big reward will be assigned.

A thrust-vectoring engine is installed at the bottom of the rocket. This engine provides different thrust values (0, 0.5g, and 1.5g) with three different angles (-15, 0, and +15 degrees).

The action space is defined as a collection of the discrete control signals of the engine. The state-space consists of the rocket position (x, y), speed (vx, vy), angle (a), angle speed (va), and the simulation time steps (t).

I implement the above environment and train a policy-based agent (actor-critic) on solving this problem. The episode reward finally converges very well after over 40000 training episodes.

Despite the simple setting of the environment and the reward, the agent successfully learned the starship classic belly flop maneuver, which makes me quite surprising. The following animation shows a comparison between the real SN10 and a fake one learned from reinforcement learning.

Requirements

See Requirements.txt.

Usage

To train an agent, see ./example_train.py

To test an agent:

import torch
from rocket import Rocket
from policy import ActorCritic
import os
import glob

# Decide which device we want to run on
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

if __name__ == '__main__':

    task = 'hover'  # 'hover' or 'landing'
    max_steps = 800
    ckpt_dir = glob.glob(os.path.join(task+'_ckpt', '*.pt'))[-1]  # last ckpt

    env = Rocket(task=task, max_steps=max_steps)
    net = ActorCritic(input_dim=env.state_dims, output_dim=env.action_dims).to(device)
    if os.path.exists(ckpt_dir):
        checkpoint = torch.load(ckpt_dir)
        net.load_state_dict(checkpoint['model_G_state_dict'])

    state = env.reset()
    for step_id in range(max_steps):
        action, log_prob, value = net.get_action(state)
        state, reward, done, _ = env.step(action)
        env.render(window_name='test')
        if env.already_crash:
            break

License

Creative Commons License Rocket-recycling by Zhengxia Zou is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Citation

@misc{zou2021rocket,
  author = {Zhengxia Zou},
  title = {Rocket-recycling with Reinforcement Learning},
  year = {2021},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/jiupinjia/rocket-recycling}}
}
Owner
Zhengxia Zou
Postdoc at the University of Michigan. Research interest: computer vision and applications in remote sensing, self-driving, and video games.
Zhengxia Zou
Neural Scene Flow Prior (NeurIPS 2021 spotlight)

Neural Scene Flow Prior Xueqian Li, Jhony Kaesemodel Pontes, Simon Lucey Will appear on Thirty-fifth Conference on Neural Information Processing Syste

Lilac Lee 85 Jan 03, 2023
Self-attentive task GAN for space domain awareness data augmentation.

SATGAN TODO: update the article URL once published. Article about this implemention The self-attentive task generative adversarial network (SATGAN) le

Nathan 2 Mar 24, 2022
TumorInsight is a Brain Tumor Detection and Classification model built using RESNET50 architecture.

A Brain Tumor Detection and Classification Model built using RESNET50 architecture. The model is also deployed as a web application using Flask framework.

Pranav Khurana 0 Aug 17, 2021
Geometric Sensitivity Decomposition

Geometric Sensitivity Decomposition This repo is the official implementation of A Geometric Perspective towards Neural Calibration via Sensitivity Dec

16 Dec 26, 2022
Repository for the paper "Online Domain Adaptation for Occupancy Mapping", RSS 2020

RSS 2020 - Online Domain Adaptation for Occupancy Mapping Repository for the paper "Online Domain Adaptation for Occupancy Mapping", Robotics: Science

Anthony 26 Sep 22, 2022
Multi-task head pose estimation in-the-wild

Multi-task head pose estimation in-the-wild We provide C++ code in order to replicate the head-pose experiments in our paper https://ieeexplore.ieee.o

Roberto Valle 26 Oct 06, 2022
Exploration of some patients clinical variables.

Answer_ALS_clinical_data Exploration of some patients clinical variables. All the clinical / metadata data is available here: https://data.answerals.o

1 Jan 20, 2022
Demonstrates iterative FGSM on Apple's NeuralHash model.

apple-neuralhash-attack Demonstrates iterative FGSM on Apple's NeuralHash model. TL;DR: It is possible to apply noise to CSAM images and make them loo

Lim Swee Kiat 11 Jun 23, 2022
Empirical Study of Transformers for Source Code & A Simple Approach for Handling Out-of-Vocabulary Identifiers in Deep Learning for Source Code

Transformers for variable misuse, function naming and code completion tasks The official PyTorch implementation of: Empirical Study of Transformers fo

Bayesian Methods Research Group 56 Nov 15, 2022
Code for CPM-2 Pre-Train

CPM-2 Pre-Train Pre-train CPM-2 此分支为110亿非 MoE 模型的预训练代码,MoE 模型的预训练代码请切换到 moe 分支 CPM-2技术报告请参考link。 0 模型下载 请在智源资源下载页面进行申请,文件介绍如下: 文件名 描述 参数大小 100000.tar

Tsinghua AI 136 Dec 28, 2022
HNN: Human (Hollywood) Neural Network

HNN: Human (Hollywood) Neural Network Learn the top 1000 actors on IMDB with your very own low cost, highly parallel, CUDAless biological neural netwo

Madhava Jay 0 Dec 21, 2021
Submodular Subset Selection for Active Domain Adaptation (ICCV 2021)

S3VAADA: Submodular Subset Selection for Virtual Adversarial Active Domain Adaptation ICCV 2021 Harsh Rangwani, Arihant Jain*, Sumukh K Aithal*, R. Ve

Video Analytics Lab -- IISc 13 Dec 28, 2022
A web application that provides real time temperature and humidity readings of a house.

About A web application which provides real time temperature and humidity readings of a house. If you're interested in the data collected so far click

Ben Thompson 3 Jan 28, 2022
GANTheftAuto is a fork of the Nvidia's GameGAN

Description GANTheftAuto is a fork of the Nvidia's GameGAN, which is research focused on emulating dynamic game environments. The early research done

Harrison 801 Dec 27, 2022
GraphGT: Machine Learning Datasets for Graph Generation and Transformation

GraphGT: Machine Learning Datasets for Graph Generation and Transformation Dataset Website | Paper Installation Using pip To install the core environm

y6q9 50 Aug 18, 2022
MMFlow is an open source optical flow toolbox based on PyTorch

Documentation: https://mmflow.readthedocs.io/ Introduction English | 简体中文 MMFlow is an open source optical flow toolbox based on PyTorch. It is a part

OpenMMLab 688 Jan 06, 2023
Explaining neural decisions contrastively to alternative decisions.

Contrastive Explanations for Model Interpretability This is the repository for the paper "Contrastive Explanations for Model Interpretability", about

AI2 16 Oct 16, 2022
RITA is a family of autoregressive protein models, developed by LightOn in collaboration with the OATML group at Oxford and the Debora Marks Lab at Harvard.

RITA: a Study on Scaling Up Generative Protein Sequence Models RITA is a family of autoregressive protein models, developed by a collaboration of Ligh

LightOn 69 Dec 22, 2022
Official Repository for our ICCV2021 paper: Continual Learning on Noisy Data Streams via Self-Purified Replay

Continual Learning on Noisy Data Streams via Self-Purified Replay This repository contains the official PyTorch implementation for our ICCV2021 paper.

Jinseo Jeong 22 Nov 23, 2022
In this work, we will implement some basic but important algorithm of machine learning step by step.

WoRkS continued English 中文 Français Probability Density Estimation-Non-Parametric Methods(概率密度估计-非参数方法) 1. Kernel / k-Nearest Neighborhood Density Est

liziyu0104 1 Dec 30, 2021