Rocket-recycling with Reinforcement Learning

Overview

Rocket-recycling with Reinforcement Learning

Developed by: Zhengxia Zou

IMAGE ALT TEXT HERE

I have long been fascinated by the recovery process of SpaceX rockets. In this mini-project, I worked on an interesting question that whether we can address this problem with simple reinforcement learning.

I tried on two tasks: hovering and landing. The rocket is simplified into a rigid body on a 2D plane with a thin rod, considering the basic cylinder dynamics model and air resistance proportional to the velocity.

Their reward functions are quite straightforward.

  1. For the hovering tasks: the step-reward is given based on two factors:

    1. the distance between the rocket and the predefined target point - the closer they are, the larger reward will be assigned.
    2. the angle of the rocket body (the rocket should stay as upright as possible)
  2. For the landing task: the step-reward is given based on three factors:

    1. and 2) are the same as the hovering task
    2. Speed and angle at the moment of contact with the ground - when the touching-speed are smaller than a safe threshold and the angle is close to 90 degrees (upright), we see it as a successful landing and a big reward will be assigned.

A thrust-vectoring engine is installed at the bottom of the rocket. This engine provides different thrust values (0, 0.5g, and 1.5g) with three different angles (-15, 0, and +15 degrees).

The action space is defined as a collection of the discrete control signals of the engine. The state-space consists of the rocket position (x, y), speed (vx, vy), angle (a), angle speed (va), and the simulation time steps (t).

I implement the above environment and train a policy-based agent (actor-critic) on solving this problem. The episode reward finally converges very well after over 40000 training episodes.

Despite the simple setting of the environment and the reward, the agent successfully learned the starship classic belly flop maneuver, which makes me quite surprising. The following animation shows a comparison between the real SN10 and a fake one learned from reinforcement learning.

Requirements

See Requirements.txt.

Usage

To train an agent, see ./example_train.py

To test an agent:

import torch
from rocket import Rocket
from policy import ActorCritic
import os
import glob

# Decide which device we want to run on
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

if __name__ == '__main__':

    task = 'hover'  # 'hover' or 'landing'
    max_steps = 800
    ckpt_dir = glob.glob(os.path.join(task+'_ckpt', '*.pt'))[-1]  # last ckpt

    env = Rocket(task=task, max_steps=max_steps)
    net = ActorCritic(input_dim=env.state_dims, output_dim=env.action_dims).to(device)
    if os.path.exists(ckpt_dir):
        checkpoint = torch.load(ckpt_dir)
        net.load_state_dict(checkpoint['model_G_state_dict'])

    state = env.reset()
    for step_id in range(max_steps):
        action, log_prob, value = net.get_action(state)
        state, reward, done, _ = env.step(action)
        env.render(window_name='test')
        if env.already_crash:
            break

License

Creative Commons License Rocket-recycling by Zhengxia Zou is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Citation

@misc{zou2021rocket,
  author = {Zhengxia Zou},
  title = {Rocket-recycling with Reinforcement Learning},
  year = {2021},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/jiupinjia/rocket-recycling}}
}
Owner
Zhengxia Zou
Postdoc at the University of Michigan. Research interest: computer vision and applications in remote sensing, self-driving, and video games.
Zhengxia Zou
A tool to prepare websites grabbed with wget for local viewing.

makelocal A tool to prepare websites grabbed with wget for local viewing. exapmples After fetching xkcd.com with: wget -r -no-remove-listing -r -N --p

5 Apr 23, 2022
Adaptive Attention Span for Reinforcement Learning

Adaptive Transformers in RL Official implementation of Adaptive Transformers in RL In this work we replicate several results from Stabilizing Transfor

100 Nov 15, 2022
A working implementation of the Categorical DQN (Distributional RL).

Categorical DQN. Implementation of the Categorical DQN as described in A distributional Perspective on Reinforcement Learning. Thanks to @tudor-berari

Florin Gogianu 98 Sep 20, 2022
Generate images from texts. In Russian

ruDALL-E Generate images from texts pip install rudalle==1.1.0rc0 🤗 HF Models: ruDALL-E Malevich (XL) ruDALL-E Emojich (XL) (readme here) ruDALL-E S

AI Forever 1.6k Dec 31, 2022
A check for whether the dependency jobs are all green.

alls-green A check for whether the dependency jobs are all green. Why? Do you have more than one job in your GitHub Actions CI/CD workflows setup? Do

Re:actors 33 Jan 03, 2023
Pyramid addon for OpenAPI3 validation of requests and responses.

Validate Pyramid views against an OpenAPI 3.0 document Peace of Mind The reason this package exists is to give you peace of mind when providing a REST

Pylons Project 79 Dec 30, 2022
Official Repsoitory for "Activate or Not: Learning Customized Activation." [CVPR 2021]

CVPR 2021 | Activate or Not: Learning Customized Activation. This repository contains the official Pytorch implementation of the paper Activate or Not

184 Dec 27, 2022
NeurIPS 2021, "Fine Samples for Learning with Noisy Labels"

[Official] FINE Samples for Learning with Noisy Labels This repository is the official implementation of "FINE Samples for Learning with Noisy Labels"

mythbuster 27 Dec 23, 2022
A Python toolbox to create adversarial examples that fool neural networks in PyTorch, TensorFlow, and JAX

Foolbox Native: Fast adversarial attacks to benchmark the robustness of machine learning models in PyTorch, TensorFlow, and JAX Foolbox is a Python li

Bethge Lab 2.4k Dec 25, 2022
This is a Keras implementation of a CNN for estimating age, gender and mask from a camera.

face-detector-age-gender This is a Keras implementation of a CNN for estimating age, gender and mask from a camera. Before run face detector app, expr

Devdreamsolution 2 Dec 04, 2021
Improving Generalization Bounds for VC Classes Using the Hypergeometric Tail Inversion

Improving Generalization Bounds for VC Classes Using the Hypergeometric Tail Inversion Preface This directory provides an implementation of the algori

Jean-Samuel Leboeuf 0 Nov 03, 2021
Code I use to automatically update my videos' metadata on YouTube

mCodingYouTube This repository contains the code I use to automatically update my videos' metadata on YouTube, including: titles, descriptions, tags,

James Murphy 19 Oct 07, 2022
ScaleNet: A Shallow Architecture for Scale Estimation

ScaleNet: A Shallow Architecture for Scale Estimation Repository for the code of ScaleNet paper: "ScaleNet: A Shallow Architecture for Scale Estimatio

Axel Barroso 34 Nov 09, 2022
Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation

Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation This is the inference codes of Context-Aware Image Matting for Simultaneo

Qiqi Hou 125 Oct 22, 2022
BMW TechOffice MUNICH 148 Dec 21, 2022
Neural Nano-Optics for High-quality Thin Lens Imaging

Neural Nano-Optics for High-quality Thin Lens Imaging Project Page | Paper | Data Ethan Tseng, Shane Colburn, James Whitehead, Luocheng Huang, Seung-H

Ethan Tseng 39 Dec 05, 2022
【Arxiv】Exploring Separable Attention for Multi-Contrast MR Image Super-Resolution

SANet Exploring Separable Attention for Multi-Contrast MR Image Super-Resolution Dependencies numpy==1.18.5 scikit_image==0.16.2 torchvision==0.8.1 to

36 Jan 05, 2023
Repository for the paper titled: "When is BERT Multilingual? Isolating Crucial Ingredients for Cross-lingual Transfer"

When is BERT Multilingual? Isolating Crucial Ingredients for Cross-lingual Transfer This repository contains code for our paper titled "When is BERT M

Princeton Natural Language Processing 9 Dec 23, 2022
Deep Q Learning with OpenAI Gym and Pokemon Showdown

pokemon-deep-learning An openAI gym project for pokemon involving deep q learning. Made by myself, Sam Little, and Layton Webber. This code captures g

2 Dec 22, 2021
Semi-Supervised Graph Prototypical Networks for Hyperspectral Image Classification, IGARSS, 2021.

Semi-Supervised Graph Prototypical Networks for Hyperspectral Image Classification, IGARSS, 2021. Bobo Xi, Jiaojiao Li, Yunsong Li and Qian Du. Code f

Bobo Xi 7 Nov 03, 2022