MPLP: Metapath-Based Label Propagation for Heterogenous Graphs

Related tags

Deep Learningmplp
Overview

MPLP: Metapath-Based Label Propagation for Heterogenous Graphs

Results on MAG240M

Here, we demonstrate the following performance on the MAG240M dataset from [email protected] 2021.

Model Test Acc Validation Acc Parameters Hardware
Our Model 0.7447 0.7669 ± 0.0003 (ensemble 0.7696) 743,449 Tesla V100 (21GB)

Reproducing results

0. Requirements

Here just list python3 packages we used in this competition:

numpy==1.19.2
torch==1.5.1+cu101
dgl-cu101==0.6.0.post1
ogb==1.3.1
sklearn==0.23.2
tqdm==4.46.1

1. Prepare Graph and Features

The preprocess code modifed from dgl baseline. We created graph with 6 different edge types instead of 5.

# Time cost: 3hours,30mins

python3 $MAG_CODE_PATH/preprocess.py
        --rootdir $MAG_INPUT_PATH \
        --author-output-path $MAG_PREP_PATH/author.npy \
        --inst-output-path $MAG_PREP_PATH/inst.npy \
        --graph-output-path $MAG_PREP_PATH \
        --graph-as-homogeneous \
        --full-output-path $MAG_PREP_PATH/full_feat.npy

The graphs and features will be saved in MAG_PREP_PATH , where the MAG_PREP_PATH is specified in run.sh.

Calculate features

The meta-path based features are generated by this script. Details can be found in our technical report.

# Time cost: 2hours,20mins (only generate label related features)

python3 $MAG_CODE_PATH/feature.py
        $MAG_INPUT_PATH \
        $MAG_PREP_PATH/dgl_graph_full_heterogeneous_csr.bin \
        $MAG_FEAT_PATH \
        --seed=42

Train RGAT model and prepare RGAT features

The RGAT model is modifed from dgl baseline. The validation accuracy is 0.701 , as same as described in the dgl baseline github.

# Time cost: 33hours,40mins (20mins for each epoch)

python3 $MAG_CODE_PATH/rgat.py
        --rootdir $MAG_INPUT_PATH \
        --graph-path $MAG_PREP_PATH/dgl_graph_full_homogeneous_csc.bin \
        --full-feature-path $MAG_PREP_PATH/full_feat.npy \
        --output-path $MAG_RGAT_PATH/ \
        --epochs=100 \
        --model-path $MAG_RGAT_PATH/model.pt \
        --submission-path $MAG_RGAT_PATH/

You will get embeddings as input features of the following MPLP models.

2. Train MPLP models

The train process splits to two steps:

  1. train the model with full train samples at a large learning rate (here we use StepLR(lr=0.01, step_size=100, gamma=0.25))
  2. then fine tune the model with latest train samples (eg, paper with year >= 2018) with a small learning rate (0.000625)

You can train the MPLP model by running the following commands:

# Time cost: 2hours,40mins for each seed

for seed in $(seq 0 7);
do
    python3 $MAG_CODE_PATH/mplp.py \
            $MAG_INPUT_PATH \
            $MAG_MPLP_PATH/data/ \
            $MAG_MPLP_PATH/output/seed${seed} \
            --gpu \
            --seed=${seed} \
            --batch_size=10240 \
            --epochs=200 \
            --num_layers=2 \
            --learning_rate=0.01 \
            --dropout=0.5 \
            --num_splits=5
done

3. Ensemble MPLP results

While having all the results with k-fold cross validation training under 8 different seeds, you can average the results by running code below:

python3 $MAG_CODE_PATH/ensemble.py $MAG_MPLP_PATH/output/ $MAG_SUBM_PATH
Owner
Qiuying Peng
Astrophysics -> Data Science
Qiuying Peng
[BMVC'21] Official PyTorch Implementation of Grounded Situation Recognition with Transformers

Grounded Situation Recognition with Transformers Paper | Model Checkpoint This is the official PyTorch implementation of Grounded Situation Recognitio

Junhyeong Cho 18 Jul 19, 2022
Coarse implement of the paper "A Simultaneous Denoising and Dereverberation Framework with Target Decoupling", On DNS-2020 dataset, the DNSMOS of first stage is 3.42 and second stage is 3.47.

SDDNet Coarse implement of the paper "A Simultaneous Denoising and Dereverberation Framework with Target Decoupling", On DNS-2020 dataset, the DNSMOS

Cyril Lv 43 Nov 21, 2022
A Broader Picture of Random-walk Based Graph Embedding

Random-walk Embedding Framework This repository is a reference implementation of the random-walk embedding framework as described in the paper: A Broa

Zexi Huang 23 Dec 13, 2022
deep-prae

Deep Probabilistic Accelerated Evaluation (Deep-PrAE) Our work presents an efficient rare event simulation methodology for black box autonomy using Im

Safe AI Lab 4 Apr 17, 2021
AI Toolkit for Healthcare Imaging

Medical Open Network for AI MONAI is a PyTorch-based, open-source framework for deep learning in healthcare imaging, part of PyTorch Ecosystem. Its am

Project MONAI 3.7k Jan 07, 2023
A toy project using OpenCV and PyMunk

A toy project using OpenCV, PyMunk and Mediapipe the source code for my LindkedIn post It's just a toy project and I didn't write a documentation yet,

Amirabbas Asadi 82 Oct 28, 2022
Experiments on Flood Segmentation on Sentinel-1 SAR Imagery with Cyclical Pseudo Labeling and Noisy Student Training

Flood Detection Challenge This repository contains code for our submission to the ETCI 2021 Competition on Flood Detection (Winning Solution #2). Acco

Siddha Ganju 108 Dec 28, 2022
😊 Python module for face feature changing

PyWarping Python module for face feature changing Installation pip install pywarping If you get an error: No such file or directory: 'cmake': 'cmake',

Dopevog 10 Sep 10, 2021
Code to produce syntactic representations that can be used to study syntax processing in the human brain

Can fMRI reveal the representation of syntactic structure in the brain? The code base for our paper on understanding syntactic representations in the

Aniketh Janardhan Reddy 4 Dec 18, 2022
Human head pose estimation using Keras over TensorFlow.

RealHePoNet: a robust single-stage ConvNet for head pose estimation in the wild.

Rafael Berral Soler 71 Jan 05, 2023
Code accompanying the paper on "An Empirical Investigation of Domain Generalization with Empirical Risk Minimizers" published at NeurIPS, 2021

Code for "An Empirical Investigation of Domian Generalization with Empirical Risk Minimizers" (NeurIPS 2021) Motivation and Introduction Domain Genera

Meta Research 15 Dec 27, 2022
Repository for XLM-T, a framework for evaluating multilingual language models on Twitter data

This is the XLM-T repository, which includes data, code and pre-trained multilingual language models for Twitter. XLM-T - A Multilingual Language Mode

Cardiff NLP 112 Dec 27, 2022
Libtorch yolov3 deepsort

Overview It is for my undergrad thesis in Tsinghua University. There are four modules in the project: Detection: YOLOv3 Tracking: SORT and DeepSORT Pr

Xu Wei 226 Dec 13, 2022
Telegram chatbot created with deep learning model (LSTM) and telebot library.

Telegram chatbot Telegram chatbot created with deep learning model (LSTM) and telebot library. Description This program will allow you to create very

1 Jan 04, 2022
A PyTorch implementation of Mugs proposed by our paper "Mugs: A Multi-Granular Self-Supervised Learning Framework".

Mugs: A Multi-Granular Self-Supervised Learning Framework This is a PyTorch implementation of Mugs proposed by our paper "Mugs: A Multi-Granular Self-

Sea AI Lab 62 Nov 08, 2022
A multilingual version of MS MARCO passage ranking dataset

mMARCO A multilingual version of MS MARCO passage ranking dataset This repository presents a neural machine translation-based method for translating t

75 Dec 27, 2022
UMPNet: Universal Manipulation Policy Network for Articulated Objects

UMPNet: Universal Manipulation Policy Network for Articulated Objects Zhenjia Xu, Zhanpeng He, Shuran Song Columbia University Robotics and Automation

Columbia Artificial Intelligence and Robotics Lab 33 Dec 03, 2022
Multispectral Object Detection with Yolov5

Multispectral-Object-Detection Intro Official Code for Cross-Modality Fusion Transformer for Multispectral Object Detection. Multispectral Object Dete

Richard Fang 121 Jan 01, 2023
[ICML 2021] Towards Understanding and Mitigating Social Biases in Language Models

Towards Understanding and Mitigating Social Biases in Language Models This repo contains code and data for evaluating and mitigating bias from generat

Paul Liang 42 Jan 03, 2023
LightNet++: Boosted Light-weighted Networks for Real-time Semantic Segmentation

LightNet++ !!!New Repo.!!! ⇒ EfficientNet.PyTorch: Concise, Modular, Human-friendly PyTorch implementation of EfficientNet with Pre-trained Weights !!

linksense 237 Jan 05, 2023