A Broader Picture of Random-walk Based Graph Embedding

Overview

Random-walk Embedding Framework

This repository is a reference implementation of the random-walk embedding framework as described in the paper:

A Broader Picture of Random-walk Based Graph Embedding.
Zexi Huang, Arlei Silva, Ambuj Singh.
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2021.

The framework decomposes random-walk based graph embedding into three major components: random-walk process, similarity function, and embedding algorithm. By tuning the components, it not only covers many existing approaches such as DeepWalk but naturally motivates novel ones that have shown superior performance on certain downstream tasks.

Usage

Example

To use the framework with default settings to embed the BlogCatalog network:
python src/embedding.py --graph graph/blogcatalog.edges --embeddings emb/blogcatalog.embeddings
where graph/blogcatalog.edges stores the input graph and emb/blogcatalog.embeddings is the target file for output embeddings.

Options

You can check out all the available options (framework components, Markov time parameters, graph types, etc.) with:
python src/embedding.py --help

Input Graph

The supported input graph format is a list of edges:

node1_id_int node2_id_int <weight_float, optional>

where node ids are should be consecutive integers starting from 1. The graph is by default undirected and unweighted, which can be changed by setting appropriate flags.

Output Embeddings

The output embedding file has n lines where n is the number of nodes in the graph. Each line stores the learned embedding of the node with its id equal to the line number:

emb_dim1 emb_dim2 ... emb_dimd

Evaluating

Here, we show by examples how to evaluate and compare different settings of our framework on node classification, link prediction, and community detection tasks. Full evaluation options are can be found with:
python src/evaluating.py --help

Note that the results shown below may not be identical to those in the paper due to different random seeds, but the conclusions are the same.

Node Classification

Once we generate the embedding with the script in previous section, we can call
python src/evaluating.py --task node-classification --embeddings emb/blogcatalog.embeddings --training-ratio 0.5
to compute the Micro-F1 and Macro-F1 scores of the node classification.

The results for comparing Pointwise Mutual Information (PMI) and Autocovariance (AC) similarity metrics with the best Markov times and varying training ratios are as follows:

Training Ratio 10% 20% 30% 40% 50% 60% 70% 80% 90%
PMI Micro-F1 0.3503 0.3814 0.3993 0.4106 0.4179 0.4227 0.4255 0.4222 0.4228
(time=4) Macro-F1 0.2212 0.2451 0.2575 0.2669 0.2713 0.2772 0.2768 0.2689 0.2678
AC Micro-F1 0.3547 0.3697 0.3785 0.3837 0.3872 0.3906 0.3912 0.3927 0.3930
(time=5) Macro-F1 0.2137 0.2299 0.2371 0.2406 0.2405 0.2413 0.2385 0.2356 0.2352

Link Prediction

Prepare

To evaluate the embedding method on link prediction, we first have to remove a ratio of edges in the original graph:
python src/evaluating.py --task link-prediction --mode prepare --graph graph/blogcatalog.edges --remaining-edges graph/blogcatalog.remaining-edges --removed-edges graph/blogcatalog.removed-edges

This takes the original graph graph/blogcatalog.edges as input and output the removed and remaining edges to graph/blogcatalog.removed-edges and graph/blogcatalog.remaining-edges.

Embed

Then, we embed based on the remaining edges of the network with the embedding script. For example:
python src/embedding.py --graph graph/blogcatalog.remaining-edges --embeddings emb/blogcatalog.residual-embeddings

Evaluate

Finally, we evaluate the performance of link prediction in terms of [email protected] based on the embeddings of the residual graph and the removed edges:
python src/evaluating.py --task link-prediction --mode evaluate --embeddings emb/blogcatalog.residual-embeddings --remaining-edges graph/blogcatalog.remaining-edges --removed-edges graph/blogcatalog.removed-edges --k 1.0

The results for comparing PMI and autocovariance similarity metrics with the best Markov times and varying k are as follows:

k 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
PMI (time=1) 0.2958 0.2380 0.2068 0.1847 0.1678 0.1560 0.1464 0.1382 0.1315 0.1260
AC (time=3) 0.4213 0.3420 0.2982 0.2667 0.2434 0.2253 0.2112 0.2000 0.1893 0.1802

Community Detection

Assume the embeddings for the Airport network emb/airport.embeddings have been generated. The following computes the Normalized Mutual Information (NMI) between the ground-truth country communities and the k-means clustering of embeddings:
python src/evaluating.py --task community-detection --embeddings emb/airport.embeddings --communities graph/airport.country-labels

Citing

If you find our framework useful, please consider citing the following paper:

@inproceedings{random-walk-embedding,
author = {Huang, Zexi and Silva, Arlei and Singh, Ambuj},
 title = {A Broader Picture of Random-walk Based Graph Embedding},
 booktitle = {SIGKDD},
 year = {2021}
}
Owner
Zexi Huang
Zexi Huang
Semi-supervised semantic segmentation needs strong, varied perturbations

Semi-supervised semantic segmentation using CutMix and Colour Augmentation Implementations of our papers: Semi-supervised semantic segmentation needs

146 Dec 20, 2022
A general, feasible, and extensible framework for classification tasks.

Pytorch Classification A general, feasible and extensible framework for 2D image classification. Features Easy to configure (model, hyperparameters) T

Eugene 26 Nov 22, 2022
A visualisation tool for Deep Reinforcement Learning

DRLVIS - Visualising Deep Reinforcement Learning Created by Marios Sirtmatsis with the support of Alex Bäuerle. DRLVis is an application used for visu

Marios Sirtmatsis 1 Nov 04, 2021
ConvMAE: Masked Convolution Meets Masked Autoencoders

ConvMAE ConvMAE: Masked Convolution Meets Masked Autoencoders Peng Gao1, Teli Ma1, Hongsheng Li2, Jifeng Dai3, Yu Qiao1, 1 Shanghai AI Laboratory, 2 M

Alpha VL Team of Shanghai AI Lab 345 Jan 08, 2023
A set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI.

Overview This is a set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI. Make TFRecords To run t

8 Nov 01, 2022
(Python, R, C/C++) Isolation Forest and variations such as SCiForest and EIF, with some additions (outlier detection + similarity + NA imputation)

IsoTree Fast and multi-threaded implementation of Extended Isolation Forest, Fair-Cut Forest, SCiForest (a.k.a. Split-Criterion iForest), and regular

141 Dec 29, 2022
Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis"

StrengthNet Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis" https://arxiv.org/abs/2110

RuiLiu 65 Dec 20, 2022
Airborne magnetic data of the Osborne Mine and Lightning Creek sill complex, Australia

Osborne Mine, Australia - Airborne total-field magnetic anomaly This is a section of a survey acquired in 1990 by the Queensland Government, Australia

Fatiando a Terra Datasets 1 Jan 21, 2022
GNPy: Optical Route Planning and DWDM Network Optimization

GNPy is an open-source, community-developed library for building route planning and optimization tools in real-world mesh optical networks

Telecom Infra Project 140 Dec 19, 2022
Dynamic View Synthesis from Dynamic Monocular Video

Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer This repository contains code to compute depth from a

Intelligent Systems Lab Org 2.3k Jan 01, 2023
Code for Fully Context-Aware Image Inpainting with a Learned Semantic Pyramid

SPN: Fully Context-Aware Image Inpainting with a Learned Semantic Pyramid Code for Fully Context-Aware Image Inpainting with a Learned Semantic Pyrami

12 Jun 27, 2022
The repository for freeCodeCamp's YouTube course, Algorithmic Trading in Python

Algorithmic Trading in Python This repository Course Outline Section 1: Algorithmic Trading Fundamentals What is Algorithmic Trading? The Differences

Nick McCullum 1.8k Jan 02, 2023
Bytedance Inc. 2.5k Jan 06, 2023
Code for database and frontend of webpage for Neural Fields in Visual Computing and Beyond.

Neural Fields in Visual Computing—Complementary Webpage This is based on the amazing MiniConf project from Hendrik Strobelt and Sasha Rush—thank you!

Brown University Visual Computing Group 29 Nov 30, 2022
Toontown: Galaxy, a new Toontown game based on Disney's Toontown Online

Toontown: Galaxy The official archive repo for Toontown: Galaxy, a new Toontown

1 Feb 15, 2022
A tf.keras implementation of Facebook AI's MadGrad optimization algorithm

MADGRAD Optimization Algorithm For Tensorflow This package implements the MadGrad Algorithm proposed in Adaptivity without Compromise: A Momentumized,

20 Aug 18, 2022
Have you ever wondered how cool it would be to have your own A.I

Have you ever wondered how cool it would be to have your own A.I. assistant Imagine how easier it would be to send emails without typing a single word, doing Wikipedia searches without opening web br

Harsh Gupta 1 Nov 09, 2021
This repository contains the official code of the paper Equivariant Subgraph Aggregation Networks (ICLR 2022)

Equivariant Subgraph Aggregation Networks (ESAN) This repository contains the official code of the paper Equivariant Subgraph Aggregation Networks (IC

Beatrice Bevilacqua 59 Dec 13, 2022
Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks

Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks (SDPoint) This repository contains the cod

Jason Kuen 17 Jul 04, 2022
FMA: A Dataset For Music Analysis

FMA: A Dataset For Music Analysis Michaël Defferrard, Kirell Benzi, Pierre Vandergheynst, Xavier Bresson. International Society for Music Information

Michaël Defferrard 1.8k Dec 29, 2022