Official Repository for Machine Learning class - Physics Without Frontiers 2021

Overview

PWF 2021

Física Sin Fronteras es un proyecto del Centro Internacional de Física Teórica (ICTP) en Trieste Italia. El ICTP es un centro dedicado a fomentar el estudio de la ciencia en el mundo y particularmente en los países en vías de desarrollo. Siguiendo esta línea, Física Sin Fronteras busca apoyar en la realización de proyectos en países donde queda trabajo por hacer en su desarrollo científico. La particularidad de estos proyectos es que son propuestos por los países organizadores y buscan responder a las necesidades de este.

El enfoque que hemos elegido para Guatemala es el de cursos con mucha práctica, o hands-on, en inglés. Los estudiantes deben tener una participación muy activa. También, una de nuestras prioridades es la excelencia. Buscamos que nuestros expositores sean de la mejor calidad a nivel mundial. Para este año, elegimos el tema de computación cuántica que estará a cargo de Marco Cerezo, un físico guatemalteco experto en estos temas, que realiza investigación en el desarrollo y la implementación de algoritmos de computación cuántica, en el Laboratorio Nacional de Los Álamos de Nuevo Mexico, Estados Unidos. Nos enorgullece presentar a Marco como nuestro primer profesor guatemalteco en un curso de Física Sin Fronteras en Guatemala.

El curso contará con una semana de introducción propedéutica, para que los estudiantes que no estén familiarizados con la mecánica cuántica puedan seguir los conceptos presentados por Marco. Este curso será impartido por los profesores de la Escuela de Ciencias Físicas y Matemáticas de la Universidad de San Carlos (ECFM-USAC), Juan Diego Chang y Giovanni Ramírez. Juan Diego es profesor de los cursos de mecánica cuántica en la escuela y cuenta con una maestría en Física Teórica de la Universidad de Cergy-Pontoise, Francia. Giovanni, por su lado, es doctor en física de la materia condensada por la Universidad Autónoma de Madrid y es actualmente el principal investigador a nivel nacional en temas de mecánica e información cuántica. También, contaremos con auxiliares, l lqlue son estudiantes destacados de la ECFM y que actualmente realizan trabajos de final de grado en temas relacionados en colaboración con la Universidad Autónoma de México.Física Sin Fronteras es un proyecto del Centro Internacional de Física Teórica (ICTP) en Trieste Italia. El ICTP es un centro dedicado a fomentar el estudio de la ciencia en el mundo y particularmente en los países en vías de desarrollo. Siguiendo esta línea, Física Sin Fronteras busca apoyar en la realización de proyectos en países donde queda trabajo por hacer en su desarrollo científico. La particularidad de estos proyectos es que son propuestos por los países organizadores y buscan responder a las necesidades de este.

El enfoque que hemos elegido para Guatemala es el de cursos con mucha práctica, o hands-on, en inglés. Los estudiantes deben tener una participación muy activa. También, una de nuestras prioridades es la excelencia. Buscamos que nuestros expositores sean de la mejor calidad a nivel mundial. Para este año, elegimos el tema de computación cuántica que estará a cargo de Marco Cerezo, un físico guatemalteco experto en estos temas, que realiza investigación en el desarrollo y la implementación de algoritmos de computación cuántica, en el Laboratorio Nacional de Los Álamos de Nuevo Mexico, Estados Unidos. Nos enorgullece presentar a Marco como nuestro primer profesor guatemalteco en un curso de Física Sin Fronteras en Guatemala.

El curso contará con una semana de introducción propedéutica, para que los estudiantes que no estén familiarizados con la mecánica cuántica puedan seguir los conceptos presentados por Marco. Este curso será impartido por los profesores de la Escuela de Ciencias Físicas y Matemáticas de la Universidad de San Carlos (ECFM-USAC), Juan Diego Chang y Giovanni Ramírez. Juan Diego es profesor de los cursos de mecánica cuántica en la escuela y cuenta con una maestría en Física Teórica de la Universidad de Cergy-Pontoise, Francia. Giovanni, por su lado, es doctor en física de la materia condensada por la Universidad Autónoma de Madrid y es actualmente el principal investigador a nivel nacional en temas de mecánica e información cuántica. También, contaremos con auxiliares que son estudiantes destacados de la ECFM y que actualmente realizan trabajos de final de grado en temas relacionados en colaboración con la Universidad Autónoma de México.

AttGAN: Facial Attribute Editing by Only Changing What You Want (IEEE TIP 2019)

News 11 Jan 2020: We clean up the code to make it more readable! The old version is here: v1. AttGAN TIP Nov. 2019, arXiv Nov. 2017 TensorFlow impleme

Zhenliang He 568 Dec 14, 2022
Stacked Generative Adversarial Networks

Stacked Generative Adversarial Networks This repository contains code for the paper "Stacked Generative Adversarial Networks", CVPR 2017. Part of the

Xun Huang 241 May 07, 2022
LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

donglee 279 Dec 13, 2022
A public available dataset for road boundary detection in aerial images

Topo-boundary This is the official github repo of paper Topo-boundary: A Benchmark Dataset on Topological Road-boundary Detection Using Aerial Images

Zhenhua Xu 79 Jan 04, 2023
Asynchronous Advantage Actor-Critic in PyTorch

Asynchronous Advantage Actor-Critic in PyTorch This is PyTorch implementation of A3C as described in Asynchronous Methods for Deep Reinforcement Learn

Reiji Hatsugai 38 Dec 12, 2022
Exploration-Exploitation Dilemma Solving Methods

Exploration-Exploitation Dilemma Solving Methods Medium article for this repo - HERE In ths repo I implemented two techniques for tackling mentioned t

Aman Mishra 6 Jan 25, 2022
Video Frame Interpolation with Transformer (CVPR2022)

VFIformer Official PyTorch implementation of our CVPR2022 paper Video Frame Interpolation with Transformer Dependencies python = 3.8 pytorch = 1.8.0

DV Lab 63 Dec 16, 2022
Official implementation of Monocular Quasi-Dense 3D Object Tracking

Monocular Quasi-Dense 3D Object Tracking Monocular Quasi-Dense 3D Object Tracking (QD-3DT) is an online framework detects and tracks objects in 3D usi

Visual Intelligence and Systems Group 441 Dec 20, 2022
An Official Repo of CVPR '20 "MSeg: A Composite Dataset for Multi-Domain Segmentation"

This is the code for the paper: MSeg: A Composite Dataset for Multi-domain Semantic Segmentation (CVPR 2020, Official Repo) [CVPR PDF] [Journal PDF] J

226 Nov 05, 2022
IMBENS: class-imbalanced ensemble learning in Python.

IMBENS: class-imbalanced ensemble learning in Python. Links: [Documentation] [Gallery] [PyPI] [Changelog] [Source] [Download] [知乎/Zhihu] [中文README] [a

Zhining Liu 176 Jan 04, 2023
Tensorflow implementation of soft-attention mechanism for video caption generation.

SA-tensorflow Tensorflow implementation of soft-attention mechanism for video caption generation. An example of soft-attention mechanism. The attentio

Paul Chen 153 Nov 14, 2022
CellRank's reproducibility repository.

CellRank's reproducibility repository We believe that reproducibility is key and have made it as simple as possible to reproduce our results. Please e

Theis Lab 8 Oct 08, 2022
NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

5 Nov 03, 2022
This repo is to be freely used by ML devs to check the GAN performances without coding from scratch.

GANs for Fun Created because I can! GOAL The goal of this repo is to be freely used by ML devs to check the GAN performances without coding from scrat

Sagnik Roy 13 Jan 26, 2022
Can we learn gradients by Hamiltonian Neural Networks?

Can we learn gradients by Hamiltonian Neural Networks? This project was carried out as part of the Optimization for Machine Learning course (CS-439) a

2 Aug 22, 2022
Denoising Diffusion Implicit Models

Denoising Diffusion Implicit Models (DDIM) Jiaming Song, Chenlin Meng and Stefano Ermon, Stanford Implements sampling from an implicit model that is t

465 Jan 05, 2023
A project for developing transformer-based models for clinical relation extraction

Clinical Relation Extration with Transformers Aim This package is developed for researchers easily to use state-of-the-art transformers models for ext

uf-hobi-informatics-lab 101 Dec 19, 2022
This repository contains numerical implementation for the paper Intertemporal Pricing under Reference Effects: Integrating Reference Effects and Consumer Heterogeneity.

This repository contains numerical implementation for the paper Intertemporal Pricing under Reference Effects: Integrating Reference Effects and Consumer Heterogeneity.

Hansheng Jiang 6 Nov 18, 2022
Towards Long-Form Video Understanding

Towards Long-Form Video Understanding Chao-Yuan Wu, Philipp Krähenbühl, CVPR 2021 [Paper] [Project Page] [Dataset] Citation @inproceedings{lvu2021,

Chao-Yuan Wu 69 Dec 26, 2022
PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data.

Anti-Backdoor Learning PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data. Check the unlearning effect

Yige-Li 51 Dec 07, 2022