Can we learn gradients by Hamiltonian Neural Networks?

Related tags

Deep LearningOPT-ML
Overview

Can we learn gradients by Hamiltonian Neural Networks?

This project was carried out as part of the Optimization for Machine Learning course (CS-439) at EPFL in the spring 2020 semester.

Team:

The No Free Lunch Theorem suggests that there is no universally best learner and restricting the hypothesis class by introducing our prior knowledge about the task we are solving is the only way we can improve the state of affairs. This motivates the use of the learned optimizer for the given task and the use of different regularization methods. For instance, the Heavy Ball method considers the gradient descent procedure as a sliding of a heavy ball on the surface of the loss function, which results in faster convergence. More generally, one can consider the gradient descent procedure as a movement of some object on the surface of the loss function under different forces: potential, dissipative (friction) and other external forces. Such a physical process can be described by port-Hamiltonian system of equations. In this work, we propose to learn the optimizer and impose the physical laws governed by the port-Hamiltonian system of equations into the optimization algorithm to provide implicit bias which acts as regularization and helps to find the better generalization optimums. We impose physical structure by learning the gradients of the parameters: gradients are the solutions of the port-Hamiltonian system, thus their dynamics is governed by the physical laws, that are going to be learned.

To summarize, we propose a new framework based on Hamiltonian Neural Networks which is used to learn and improve gradients for the gradient descent step. Our experiments on an artificial task and MNIST dataset demonstrate that our method is able to outperform many basic optimizers and achieve comparable performance to the previous LSTM-based one. Furthermore, we explore how methods can be transferred to other architectures with different hyper-parameters, e.g. activation functions. To this end, we train HNN-based optimizer for a small neural network with the sigmoid activation on MNIST dataset and then train the same network but with the ReLU activation using the already trained optimizer. The results show that our method is transferable in this case unlike the LSTM-based optimizer.

To test optimizers we use the following tasks:

  • Quadratic functions (details are given in main.ipynb)
  • MNIST

Prerequisites

  • Ubuntu
  • Python 3
  • NVIDIA GPU

Installation

  • Clone this repo:
git clone https://github.com/AfoninAndrei/OPT-ML.git
cd OPT-ML
  • Install dependencies:
pip install requirements.txt

Usage

  • To reproduce the results: simply go through main.ipynb. Or run it on Colab
  • All implementations are in src.

Method

In fact, gradient descent is fundamentally a sequence of updates (from the output layer of the neural net back to the input), in between which a state must be stored. Thus we can think of an optimizer as a simple feedforward network (or RNN, etc.) that gives us nest update each iteration. The loss of the optimizer is the sum (weights are set to 1 in our experiments) of the losses of the optimizee as it learns.

The plan is thus to use gradient descent on parameters of model-based optimizers in order to minimize this loss, which should give us an optimizer that is capable of optimizing efficiently.

As the paper mentions, it is important that the gradients in dashed lines in the figure below are not propagated during gradient descent.

Basically this is nothing we wouldn't expect: the loss of the optimizer neural net is simply the average training loss of the optimizee as it is trained by the optimizer. The optimizer takes in the gradient of the current coordinate of the optimizee as well as its previous state, and outputs a suggested update that we hope will reduce the optimizee's loss as fast as possible.

Optimization is done coordinatewise such that to optimize each parameter by its own state. Any momentum or energy term used in the optimization is based on each parameter's own history, independent on others. Each parameter's optimization state is not shared across other coordinates.

In our approach, the role of the optimizer is given to a Hamiltonian Neural Network which is presented in figure below:

Acknowledgement

Spectral Temporal Graph Neural Network (StemGNN in short) for Multivariate Time-series Forecasting

Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting This repository is the official implementation of Spectral Temporal Gr

Microsoft 306 Dec 29, 2022
Revisting Open World Object Detection

Revisting Open World Object Detection Installation See INSTALL.md. Dataset Our new data division is based on COCO2017. We divide the training set into

58 Dec 23, 2022
Can we visualize a large scientific data set with a surrogate model? We're building a GAN for the Earth's Mantle Convection data set to see if we can!

EarthGAN - Earth Mantle Surrogate Modeling Can a surrogate model of the Earth’s Mantle Convection data set be built such that it can be readily run in

Tim 0 Dec 09, 2021
Self-supervised Multi-modal Hybrid Fusion Network for Brain Tumor Segmentation

JBHI-Pytorch This repository contains a reference implementation of the algorithms described in our paper "Self-supervised Multi-modal Hybrid Fusion N

FeiyiFANG 5 Dec 13, 2021
An Implicit Function Theorem (IFT) optimizer for bi-level optimizations

iftopt An Implicit Function Theorem (IFT) optimizer for bi-level optimizations. Requirements Python 3.7+ PyTorch 1.x Installation $ pip install git+ht

The Money Shredder Lab 2 Dec 02, 2021
The official GitHub repository for the Argoverse 2 dataset.

Argoverse 2 API Official GitHub repository for the Argoverse 2 family of datasets. If you have any questions or run into any problems with either the

Argo AI 156 Dec 23, 2022
πŸƒβ€β™€οΈ A curated list about human motion capture, analysis and synthesis.

Awesome Human Motion πŸƒβ€β™€οΈ A curated list about human motion capture, analysis and synthesis. Contents Introduction Human Models Datasets Data Process

Dennis Wittchen 274 Dec 14, 2022
TensorFlow code for the neural network presented in the paper: "Structural Language Models of Code" (ICML'2020)

SLM: Structural Language Models of Code This is an official implementation of the model described in: "Structural Language Models of Code" [PDF] To ap

73 Nov 06, 2022
A keras-based real-time model for medical image segmentation (CFPNet-M)

CFPNet-M: A Light-Weight Encoder-Decoder Based Network for Multimodal Biomedical Image Real-Time Segmentation This repository contains the implementat

268 Nov 27, 2022
Official repository for ABC-GAN

ABC-GAN The work represented in this repository is the result of a 14 week semesterthesis on photo-realistic image generation using generative adversa

IgorSusmelj 10 Jun 23, 2022
PAIRED in PyTorch πŸ”₯

PAIRED This codebase provides a PyTorch implementation of Protagonist Antagonist Induced Regret Environment Design (PAIRED), which was first introduce

UCL DARK Lab 46 Dec 12, 2022
Code for a seq2seq architecture with Bahdanau attention designed to map stereotactic EEG data from human brains to spectrograms, using the PyTorch Lightning.

stereoEEG2speech We provide code for a seq2seq architecture with Bahdanau attention designed to map stereotactic EEG data from human brains to spectro

15 Nov 11, 2022
NOMAD - A blackbox optimization software

################################################################################### #

Blackbox Optimization 78 Dec 29, 2022
Official PyTorch implementation of "Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics".

Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics This repository is the official PyTorch implementation of "Physics-aware Differ

USC-Melady 46 Nov 20, 2022
Information-Theoretic Multi-Objective Bayesian Optimization with Continuous Approximations

Information-Theoretic Multi-Objective Bayesian Optimization with Continuous Approximations Requirements The code is implemented in Python and requires

1 Nov 03, 2021
Data-driven reduced order modeling for nonlinear dynamical systems

SSMLearn Data-driven Reduced Order Models for Nonlinear Dynamical Systems This package perform data-driven identification of reduced order model based

Haller Group, Nonlinear Dynamics 27 Dec 13, 2022
An efficient and effective learning to rank algorithm by mining information across ranking candidates. This repository contains the tensorflow implementation of SERank model. The code is developed based on TF-Ranking.

SERank An efficient and effective learning to rank algorithm by mining information across ranking candidates. This repository contains the tensorflow

Zhihu 44 Oct 20, 2022
A Python wrapper for Google Tesseract

Python Tesseract Python-tesseract is an optical character recognition (OCR) tool for python. That is, it will recognize and "read" the text embedded i

Matthias A Lee 4.6k Jan 05, 2023
The MATH Dataset

Measuring Mathematical Problem Solving With the MATH Dataset This is the repository for Measuring Mathematical Problem Solving With the MATH Dataset b

Dan Hendrycks 267 Dec 26, 2022
TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition

TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition Xue, Wenyuan, et al. "TGRNet: A Table Graph Reconstruction Network for Ta

Wenyuan 68 Jan 04, 2023