[CVPR 2021] Forecasting the panoptic segmentation of future video frames

Overview

Panoptic Segmentation Forecasting

Colin Graber, Grace Tsai, Michael Firman, Gabriel Brostow, Alexander Schwing - CVPR 2021

[Link to paper]

Animated gif showing visual comparison of our model's results compared against the hybrid baseline

We propose to study the novel task of ‘panoptic segmentation forecasting’: given a set of observed frames, the goal is to forecast the panoptic segmentation for a set of unobserved frames. We also propose a first approach to forecasting future panoptic segmentations. In contrast to typical semantic forecasting, we model the motion of individual object instances and the background separately. This makes instance information persistent during forecasting, and allows us to understand the motion of each moving object.

Image presenting the model diagram

⚙️ Setup

Dependencies

Install the code using the following command: pip install -e ./

Data

  • To run this code, the gtFine_trainvaltest dataset will need to be downloaded from the Cityscapes website into the data/ directory.
  • The remainder of the required data can be downloaded using the script download_data.sh. By default, everything is downloaded into the data/ directory.
  • Training the background model requires generating a version of the semantic segmentation annotations where foreground regions have been removed. This can be done by running the script scripts/preprocessing/remove_fg_from_gt.sh.
  • Training the foreground model requires additionally downloading a pretrained MaskRCNN model. This can be found at this link. This should be saved as pretrained_models/fg/mask_rcnn_pretrain.pkl.
  • Training the background model requires additionally downloading a pretrained HarDNet model. This can be found at this link. This should be saved as pretrained_models/bg/hardnet70_cityscapes_model.pkl.

Running our code

The scripts directory contains scripts which can be used to train and evaluate the foreground, background, and egomotion models. Specifically:

  • scripts/odom/run_odom_train.sh trains the egomotion prediction model.
  • scripts/odom/export_odom.sh exports the odometry predictions, which can then be used during evaluation by other models
  • scripts/bg/run_bg_train.sh trains the background prediction model.
  • scripts/bg/run_export_bg_val.sh exports predictions make by the background using input reprojected point clouds which come from using predicted egomotion.
  • scripts/fg/run_fg_train.sh trains the foreground prediction model.
  • scripts/fg/run_fg_eval_panoptic.sh produces final panoptic semgnetation predictions based on the trained foreground model and exported background predictions. This also uses predicted egomotion as input.

We provide our pretrained foreground, background, and egomotion prediction models. The data downloading script additionally downloads these models into the directory pretrained_models/

✏️ 📄 Citation

If you found our work relevant to yours, please consider citing our paper:

@inproceedings{graber-2021-panopticforecasting,
 title   = {Panoptic Segmentation Forecasting},
 author  = {Colin Graber and
            Grace Tsai and
            Michael Firman and
            Gabriel Brostow and
            Alexander Schwing},
 booktitle = {Computer Vision and Pattern Recognition ({CVPR})},
 year = {2021}
}

👩‍⚖️ License

Copyright © Niantic, Inc. 2021. Patent Pending. All rights reserved. Please see the license file for terms.

Owner
Niantic Labs
Building technologies and ideas that move us
Niantic Labs
Deep Learning Algorithms for Hedging with Frictions

Deep Learning Algorithms for Hedging with Frictions This repository contains the Forward-Backward Stochastic Differential Equation (FBSDE) solver and

Xiaofei Shi 3 Dec 22, 2022
The official code of Anisotropic Stroke Control for Multiple Artists Style Transfer

ASMA-GAN Anisotropic Stroke Control for Multiple Artists Style Transfer Proceedings of the 28th ACM International Conference on Multimedia The officia

Six_God 146 Nov 21, 2022
Code for the paper 'A High Performance CRF Model for Clothes Parsing'.

Clothes Parsing Overview This code provides an implementation of the research paper: A High Performance CRF Model for Clothes Parsing Edgar Simo-S

Edgar Simo-Serra 119 Nov 21, 2022
PixelPyramids: Exact Inference Models from Lossless Image Pyramids (ICCV 2021)

PixelPyramids: Exact Inference Models from Lossless Image Pyramids This repository contains the PyTorch implementation of the paper PixelPyramids: Exa

Visual Inference Lab @TU Darmstadt 8 Dec 11, 2022
SC-GlowTTS: an Efficient Zero-Shot Multi-Speaker Text-To-Speech Model

SC-GlowTTS: an Efficient Zero-Shot Multi-Speaker Text-To-Speech Model Edresson Casanova, Christopher Shulby, Eren Gölge, Nicolas Michael Müller, Frede

Edresson Casanova 92 Dec 09, 2022
NLU Dataset Diagnostics

NLU Dataset Diagnostics This repository contains data and scripts to reproduce the results from our paper: Aarne Talman, Marianna Apidianaki, Stergios

Language Technology at the University of Helsinki 1 Jul 20, 2022
PyTorch implementation of Deformable Convolution

PyTorch implementation of Deformable Convolution !!!Warning: There is some issues in this implementation and this repo is not maintained any more, ple

Wei Ouyang 893 Dec 18, 2022
Implementation of the paper ''Implicit Feature Refinement for Instance Segmentation''.

Implicit Feature Refinement for Instance Segmentation This repository is an official implementation of the ACM Multimedia 2021 paper Implicit Feature

Lufan Ma 17 Dec 28, 2022
Pytorch Lightning 1.2k Jan 06, 2023
TransMorph: Transformer for Medical Image Registration

TransMorph: Transformer for Medical Image Registration keywords: Vision Transformer, Swin Transformer, convolutional neural networks, image registrati

Junyu Chen 180 Jan 07, 2023
[SDM 2022] Towards Similarity-Aware Time-Series Classification

SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie

Daochen Zha 49 Dec 27, 2022
Federated Learning Based on Dynamic Regularization

Federated Learning Based on Dynamic Regularization This is implementation of Federated Learning Based on Dynamic Regularization. Requirements Please i

39 Jan 07, 2023
PyTorch implementation code for the paper MixCo: Mix-up Contrastive Learning for Visual Representation

How to Reproduce our Results This repository contains PyTorch implementation code for the paper MixCo: Mix-up Contrastive Learning for Visual Represen

opcrisis 46 Dec 15, 2022
🔥 Cannlytics-powered artificial intelligence 🤖

Cannlytics AI 🔥 Cannlytics-powered artificial intelligence 🤖 🏗️ Installation 🏃‍♀️ Quickstart 🧱 Development 🦾 Automation 💸 Support 🏛️ License ?

Cannlytics 3 Nov 11, 2022
Fast Style Transfer in TensorFlow

Fast Style Transfer in TensorFlow Add styles from famous paintings to any photo in a fraction of a second! You can even style videos! It takes 100ms o

Jefferson 5 Oct 24, 2021
AI Flow is an open source framework that bridges big data and artificial intelligence.

Flink AI Flow Introduction Flink AI Flow is an open source framework that bridges big data and artificial intelligence. It manages the entire machine

144 Dec 30, 2022
Entity-Based Knowledge Conflicts in Question Answering.

Entity-Based Knowledge Conflicts in Question Answering Run Instructions | Paper | Citation | License This repository provides the Substitution Framewo

Apple 35 Oct 19, 2022
[CVPR 2021] Few-shot 3D Point Cloud Semantic Segmentation

Few-shot 3D Point Cloud Semantic Segmentation Created by Na Zhao from National University of Singapore Introduction This repository contains the PyTor

117 Dec 27, 2022
A way to store images in YAML.

YAMLImg A way to store images in YAML. I made this after seeing Roadcrosser's JSON-G because it was too inspiring to ignore this opportunity. Installa

5 Mar 14, 2022
The Balloon Learning Environment - flying stratospheric balloons with deep reinforcement learning.

Balloon Learning Environment Docs The Balloon Learning Environment (BLE) is a simulator for stratospheric balloons. It is designed as a benchmark envi

Google 87 Dec 25, 2022