Repository for "Improving evidential deep learning via multi-task learning," published in AAAI2022

Overview

Improving evidential deep learning via multi task learning

It is a repository of AAAI2022 paper, “Improving evidential deep learning via multi-task learning”, by Dongpin Oh and Bonggun Shin.

This repository contains the code to reproduce the Multi-task evidential neural network (MT-ENet), which uses the Lipschitz MSE loss function as the additional loss function of the evidential regression network (ENet). The Lipschitz MSE loss function can improve the accuracy of the ENet while preserving its uncertainty estimation capability, by avoiding gradient conflict with the NLL loss function—the original loss function of the ENet.

drawing

Setup

Please refer to "requirements.txt" for requring packages of this repo.

pip install -r requirements.txt

Training the ENet with the Lipschitz-MSE loss: example

from mtevi.mtevi import EvidentialMarginalLikelihood, EvidenceRegularizer, modified_mse
...
net = EvidentialNetwork() ## Evidential regression network
nll_loss = EvidentialMarginalLikelihood() ## original loss, NLL loss
reg = EvidenceRegularizer() ## evidential regularizer
mmse_loss = modified_mse ## lipschitz MSE loss
...
for inputs, labels in dataloader:
	gamma, nu, alpha, beta = net(inputs)
	loss = nll_loss(gamma, nu, alpha, beta, labels)
	loss += reg(gamma, nu, alpha, beta, labels)
	loss += mmse_loss(gamma, nu, alpha, beta, labels)
	loss.backward()	

Quick start

  • Synthetic data experiment.
python synthetic_exp.py
  • UCI regression benchmark experiments.
python uci_exp_norm -p energy
  • Drug target affinity (DTA) regression task on KIBA and Davis datasets.
python train_evinet.py -o test --type davis -f 0 --evi # ENet
python train_evinet.py -o test --type davis -f 0  # MT-ENet
  • Gradient conflict experiment on the DTA benchmarks
python check_conflict.py --type davis -f 0 # Conflict between the Lipschitz MSE (proposed) and NLL loss. 
python check_conflict.py --type davis -f 0 --abl # Conflict between the simple MSE loss and NLL loss.

Characteristic of the Lipschitz MSE loss

drawing

  • The Lipschitz MSE loss function can support training the ENet to more accurately predicts target values.
  • It regularizes its gradient to prevent gradient conflict with the NLL loss--the original loss function--if the NLL loss increases predictive uncertainty of the ENet.
  • Please check our paper for details.
Owner
deargen
deargen
Newt - a Gaussian process library in JAX.

Newt __ \/_ (' \`\ _\, \ \\/ /`\/\ \\ \ \\

AaltoML 0 Nov 02, 2021
Interactive web apps created using geemap and streamlit

geemap-apps Introduction This repo demostrates how to build a multi-page Earth Engine App using streamlit and geemap. You can deploy the app on variou

Qiusheng Wu 27 Dec 23, 2022
This porject is intented to build the most accurate model for predicting the porbability of loan default

Estimating-Loan-Default-Probability IBA ML2 Mid-project / Kaggle Competition This porject is intented to build the most accurate model for predicting

Adil Gahramanov 1 Jan 24, 2022
Face Synthetics dataset is a collection of diverse synthetic face images with ground truth labels.

The Face Synthetics dataset Face Synthetics dataset is a collection of diverse synthetic face images with ground truth labels. It was introduced in ou

Microsoft 608 Jan 02, 2023
Training Very Deep Neural Networks Without Skip-Connections

DiracNets v2 update (January 2018): The code was updated for DiracNets-v2 in which we removed NCReLU by adding per-channel a and b multipliers without

Sergey Zagoruyko 585 Oct 12, 2022
FB-tCNN for SSVEP Recognition

FB-tCNN for SSVEP Recognition Here are the codes of the tCNN and FB-tCNN in the paper "Filter Bank Convolutional Neural Network for Short Time-Window

Wenlong Ding 12 Dec 14, 2022
Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships.

feature-set-comp Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships. Reposito

Trent Henderson 7 May 25, 2022
This program creates a formatted excel file which highlights the undervalued stock according to Graham's number.

Over-and-Undervalued-Stocks Of Nepse Using Graham's Number Scrap the latest data using different websites and creates a formatted excel file that high

6 May 03, 2022
A mini lib that implements several useful functions binding to PyTorch in C++.

Torch-gather A mini library that implements several useful functions binding to PyTorch in C++. What does gather do? Why do we need it? When dealing w

maxwellzh 8 Sep 07, 2022
Codebase for "ProtoAttend: Attention-Based Prototypical Learning."

Codebase for "ProtoAttend: Attention-Based Prototypical Learning." Authors: Sercan O. Arik and Tomas Pfister Paper: Sercan O. Arik and Tomas Pfister,

47 2 May 17, 2022
Machine learning notebooks in different subjects optimized to run in google collaboratory

Notebooks Name Description Category Link Training pix2pix This notebook shows a simple pipeline for training pix2pix on a simple dataset. Most of the

Zaid Alyafeai 363 Dec 06, 2022
Unadversarial Examples: Designing Objects for Robust Vision

Unadversarial Examples: Designing Objects for Robust Vision This repository contains the code necessary to replicate the major results of our paper: U

Microsoft 93 Nov 28, 2022
Code for testing convergence rates of Lipschitz learning on graphs

📈 LipschitzLearningRates The code in this repository reproduces the experimental results on convergence rates for k-nearest neighbor graph infinity L

2 Dec 20, 2021
An Intelligent Self-driving Truck System For Highway Transportation

Inceptio Intelligent Truck System An Intelligent Self-driving Truck System For Highway Transportation Note The code is still in development. OS requir

InceptioResearch 11 Jul 13, 2022
This project is based on RIFE and aims to make RIFE more practical for users by adding various features and design new models

CPM 项目描述 CPM(Chinese Pretrained Models)模型是北京智源人工智能研究院和清华大学发布的中文大规模预训练模型。官方发布了三种规模的模型,参数量分别为109M、334M、2.6B,用户需申请与通过审核,方可下载。 由于原项目需要考虑大模型的训练和使用,需要安装较为复杂

hzwer 190 Jan 08, 2023
DC540 hacking challenge 0x00005a.

dc540-0x00005a DC540 hacking challenge 0x00005a. PROMOTIONAL VIDEO - WATCH NOW HERE ON YOUTUBE CRITICAL PART 5A VIDEO - WATCH NOW HERE ON YOUTUBE Prio

Kevin Thomas 3 May 09, 2022
A PyTorch Implementation of "Watch Your Step: Learning Node Embeddings via Graph Attention" (NeurIPS 2018).

Attention Walk ⠀⠀ A PyTorch Implementation of Watch Your Step: Learning Node Embeddings via Graph Attention (NIPS 2018). Abstract Graph embedding meth

Benedek Rozemberczki 303 Dec 09, 2022
Repo for CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning

CReST in Tensorflow 2 Code for the paper: "CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning" by Chen Wei, Ki

Google Research 75 Nov 01, 2022
Pytorch implementation of the Variational Recurrent Neural Network (VRNN).

VariationalRecurrentNeuralNetwork Pytorch implementation of the Variational RNN (VRNN), from A Recurrent Latent Variable Model for Sequential Data. Th

emmanuel 251 Dec 17, 2022
🔮 A refreshing functional take on deep learning, compatible with your favorite libraries

Thinc: A refreshing functional take on deep learning, compatible with your favorite libraries From the makers of spaCy, Prodigy and FastAPI Thinc is a

Explosion 2.6k Dec 30, 2022