A Simulated Optimal Intrusion Response Game

Overview

Optimal Intrusion Response

An OpenAI Gym interface to a MDP/Markov Game model for optimal intrusion response of a realistic infrastructure simulated using system traces.

Included Environments

  • optimal-intrusion-response-v1
  • optimal-intrusion-response-v2
  • optimal-intrusion-response-v3

Requirements

  • Python 3.5+
  • OpenAI Gym
  • NumPy
  • jsonpickle (for configuration files)
  • torch (for baseline algorithms)

Installation

# install from pip
pip install gym-optimal-intrusion-response==1.0.0
# local install from source
$ pip install -e gym-optimal-intrusion-response
# force upgrade deps
$ pip install -e gym-optimal-intrusion-response --upgrade

# git clone and install from source
git clone https://github.com/Limmen/gym-optimal-intrusion-response
cd gym-optimal-intrusion-response
pip3 install -e .

Usage

The environment can be accessed like any other OpenAI environment with gym.make. Once the environment has been created, the API functions step(), reset(), render(), and close() can be used to train any RL algorithm of your preference.

import gym
from gym_idsgame.envs import IdsGameEnv
env_name = "optimal-intrusion-response-v1"
env = gym.make(env_name)

Infrastructure

Traces

Alert/login traces from the emulated infrastructure are available in (./traces).

Publications

@INPROCEEDINGS{hammar_stadler_cnsm_21,
AUTHOR="Kim Hammar and Rolf Stadler",
TITLE="Learning Intrusion Prevention Policies through Optimal Stopping",
BOOKTITLE="International Conference on Network and Service Management (CNSM 2021)",
ADDRESS="Izmir, Turkey",
DAYS=1,
YEAR=2021,
note={\url{http://dl.ifip.org/db/conf/cnsm/cnsm2021/1570732932.pdf}},
KEYWORDS="Network Security, automation, optimal stopping, reinforcement learning, Markov Decision Processes",
ABSTRACT="We study automated intrusion prevention using reinforcement learning. In a novel approach, we formulate the problem of intrusion prevention as an optimal stopping problem. This formulation allows us insight into the structure of the optimal policies, which turn out to be threshold based. Since the computation of the optimal defender policy using dynamic programming is not feasible for practical cases, we approximate the optimal policy through reinforcement learning in a simulation environment. To define the dynamics of the simulation, we emulate the target infrastructure and collect measurements. Our evaluations show that the learned policies are close to optimal and that they indeed can be expressed using thresholds."
}
@INPROCEEDINGS{Hamm2011:Finding,
AUTHOR="Kim Hammar and Rolf Stadler",
TITLE="Finding Effective Security Strategies through Reinforcement Learning and
{Self-Play}",
BOOKTITLE="International Conference on Network and Service Management (CNSM 2020)
(CNSM 2020)",
ADDRESS="Izmir, Turkey",
DAYS=1,
MONTH=nov,
YEAR=2020,
KEYWORDS="Network Security; Reinforcement Learning; Markov Security Games",
ABSTRACT="We present a method to automatically find security strategies for the use
case of intrusion prevention. Following this method, we model the
interaction between an attacker and a defender as a Markov game and let
attack and defense strategies evolve through reinforcement learning and
self-play without human intervention. Using a simple infrastructure
configuration, we demonstrate that effective security strategies can emerge
from self-play. This shows that self-play, which has been applied in other
domains with great success, can be effective in the context of network
security. Inspection of the converged policies show that the emerged
policies reflect common-sense knowledge and are similar to strategies of
humans. Moreover, we address known challenges of reinforcement learning in
this domain and present an approach that uses function approximation, an
opponent pool, and an autoregressive policy representation. Through
evaluations we show that our method is superior to two baseline methods but
that policy convergence in self-play remains a challenge."
}
@misc{hammar2021intrusion,
      title={Intrusion Prevention through Optimal Stopping}, 
      author={Kim Hammar and Rolf Stadler},
      year={2021},
      eprint={2111.00289},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

See also

Author & Maintainer

Kim Hammar [email protected]

Copyright and license

LICENSE

Creative Commons

(C) 2021, Kim Hammar

You might also like...
 Simulated garment dataset for virtual try-on
Simulated garment dataset for virtual try-on

Simulated garment dataset for virtual try-on This repository contains the dataset used in the following papers: Self-Supervised Collision Handling via

PINN Burgers - 1D Burgers equation simulated by PINN

PINN(s): Physics-Informed Neural Network(s) for Burgers equation This is an impl

POT : Python Optimal Transport

POT: Python Optimal Transport This open source Python library provide several solvers for optimization problems related to Optimal Transport for signa

Official implementation of our CVPR2021 paper
Official implementation of our CVPR2021 paper "OTA: Optimal Transport Assignment for Object Detection" in Pytorch.

OTA: Optimal Transport Assignment for Object Detection This project provides an implementation for our CVPR2021 paper "OTA: Optimal Transport Assignme

Exact Pareto Optimal solutions for preference based Multi-Objective Optimization

Exact Pareto Optimal solutions for preference based Multi-Objective Optimization

Code for paper "Vocabulary Learning via Optimal Transport for Neural Machine Translation"

**Codebase and data are uploaded in progress. ** VOLT(-py) is a vocabulary learning codebase that allows researchers and developers to automaticaly ge

A Planar RGB-D SLAM which utilizes Manhattan World structure to provide optimal camera pose trajectory while also providing a sparse reconstruction containing points, lines and planes, and a dense surfel-based reconstruction.
A Planar RGB-D SLAM which utilizes Manhattan World structure to provide optimal camera pose trajectory while also providing a sparse reconstruction containing points, lines and planes, and a dense surfel-based reconstruction.

ManhattanSLAM Authors: Raza Yunus, Yanyan Li and Federico Tombari ManhattanSLAM is a real-time SLAM library for RGB-D cameras that computes the camera

A Python library for differentiable optimal control on accelerators.

A Python library for differentiable optimal control on accelerators.

Developed an optimized algorithm which finds the most optimal path between 2 points in a 3D Maze using various AI search techniques like BFS, DFS, UCS, Greedy BFS and A*

Developed an optimized algorithm which finds the most optimal path between 2 points in a 3D Maze using various AI search techniques like BFS, DFS, UCS, Greedy BFS and A*. The algorithm was extremely optimal running in ~15s to ~30s for search spaces as big as 10000000 nodes where a set of 18 actions could be performed at each node in the 3D Maze.

Comments
  • gym-optimal-intrusion-response cannot gym.make

    gym-optimal-intrusion-response cannot gym.make

    After I installed gym-optimal-intrusion-response

    # git clone and install from source git clone https://github.com/Limmen/gym-optimal-intrusion-response cd gym-optimal-intrusion-response pip3 install -e .

    I use it by

    import gym from gym_idsgame.envs import IdsGameEnv env_name = "optimal-intrusion-response-v1" env = gym.make(env_name)

    but I had a problem

    gym.error.UnregisteredEnv: No registered env with id: optimal-intrusion-response-v1

    opened by wangzepeng111 4
  • May I ask you for how to start this project?

    May I ask you for how to start this project?

    I had read your paper Learning Intrusion Prevention Policies through Optimal Stopping, and have some problems,such as the defender policy against NOISYATTACKER and STEALTHYATTACKER, I don't know how it works. And your code import gym_pycr_ctf but I can't find this function

    opened by Arashiailing 2
Releases(1.0.0)
Owner
Kim Hammar
PhD @KTH, ML, Distributed systems, security & stuff. Previously @logicalclocks, Allstate, Ericsson.
Kim Hammar
MobileNetV1-V2,MobileNeXt,GhostNet,AdderNet,ShuffleNetV1-V2,Mobile+ViT etc.

MobileNetV1-V2,MobileNeXt,GhostNet,AdderNet,ShuffleNetV1-V2,Mobile+ViT etc. ⭐⭐⭐⭐⭐

568 Jan 04, 2023
This is a collection of simple PyTorch implementations of neural networks and related algorithms. These implementations are documented with explanations,

labml.ai Deep Learning Paper Implementations This is a collection of simple PyTorch implementations of neural networks and related algorithms. These i

labml.ai 16.4k Jan 09, 2023
3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks

3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks Introduction This repository contains the code and models for the follo

124 Jan 06, 2023
Sandbox for training deep learning networks

Deep learning networks This repo is used to research convolutional networks primarily for computer vision tasks. For this purpose, the repo contains (

Oleg Sémery 2.7k Jan 01, 2023
[CVPR2021 Oral] FFB6D: A Full Flow Bidirectional Fusion Network for 6D Pose Estimation.

FFB6D This is the official source code for the CVPR2021 Oral work, FFB6D: A Full Flow Biderectional Fusion Network for 6D Pose Estimation. (Arxiv) Tab

Yisheng (Ethan) He 201 Dec 28, 2022
An Implementation of SiameseRPN with Feature Pyramid Networks

SiameseRPN with FPN This project is mainly based on HelloRicky123/Siamese-RPN. What I've done is just add a Feature Pyramid Network method to the orig

3 Apr 16, 2022
You Only 👀 One Sequence

You Only 👀 One Sequence TL;DR: We study the transferability of the vanilla ViT pre-trained on mid-sized ImageNet-1k to the more challenging COCO obje

Hust Visual Learning Team 666 Jan 03, 2023
Scalable Multi-Agent Reinforcement Learning

Scalable Multi-Agent Reinforcement Learning 1. Featured algorithms: Value Function Factorization with Variable Agent Sub-Teams (VAST) [1] 2. Implement

3 Aug 02, 2022
SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis

SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis Pretrained Models In this work, we created synthetic tissue

Emirhan Kurtuluş 1 Feb 07, 2022
ML model to classify between cats and dogs

Cats-and-dogs-classifier This is my first ML model which can classify between cats and dogs. Here the accuracy is around 75%, however , the accuracy c

Sharath V 4 Aug 20, 2021
A lightweight python AUTOmatic-arRAY library.

A lightweight python AUTOmatic-arRAY library. Write numeric code that works for: numpy cupy dask autograd jax mars tensorflow pytorch ... and indeed a

Johnnie Gray 62 Dec 27, 2022
[EMNLP 2021] Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training

RoSTER The source code used for Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training, p

Yu Meng 60 Dec 30, 2022
Codebase for the self-supervised goal reaching benchmark introduced in the LEXA paper

LEXA Benchmark Codebase for the self-supervised goal reaching benchmark introduced in the LEXA paper (Discovering and Achieving Goals via World Models

Oleg Rybkin 36 Dec 22, 2022
Driller: augmenting AFL with symbolic execution!

Driller Driller is an implementation of the driller paper. This implementation was built on top of AFL with angr being used as a symbolic tracer. Dril

Shellphish 791 Jan 06, 2023
This is an open source python repository for various python tests

Welcome to Py-tests This is an open source python repository for various python tests. This is in response to the hacktoberfest2021 challenge. It is a

Yada Martins Tisan 3 Oct 31, 2021
Logsig-RNN: a novel network for robust and efficient skeleton-based action recognition

GCN_LogsigRNN This repository holds the codebase for the paper: Logsig-RNN: a novel network for robust and efficient skeleton-based action recognition

7 Oct 14, 2022
Modeling Temporal Concept Receptive Field Dynamically for Untrimmed Video Analysis

Modeling Temporal Concept Receptive Field Dynamically for Untrimmed Video Analysis This is a PyTorch implementation of the model described in our pape

qzhb 6 Jul 08, 2021
Code for 2021 NeurIPS --- Towards Multi-Grained Explainability for Graph Neural Networks

ReFine: Multi-Grained Explainability for GNNs This is the official code for Towards Multi-Grained Explainability for Graph Neural Networks (NeurIPS 20

Shirley (Ying-Xin) Wu 47 Dec 16, 2022
Python package for downloading ECMWF reanalysis data and converting it into a time series format.

ecmwf_models Readers and converters for data from the ECMWF reanalysis models. Written in Python. Works great in combination with pytesmo. Citation If

TU Wien - Department of Geodesy and Geoinformation 31 Dec 26, 2022
Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite.

TFlite Ultra Fast Lane Detection Inference Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite. So

Ibai Gorordo 12 Aug 27, 2022