A Simulated Optimal Intrusion Response Game

Overview

Optimal Intrusion Response

An OpenAI Gym interface to a MDP/Markov Game model for optimal intrusion response of a realistic infrastructure simulated using system traces.

Included Environments

  • optimal-intrusion-response-v1
  • optimal-intrusion-response-v2
  • optimal-intrusion-response-v3

Requirements

  • Python 3.5+
  • OpenAI Gym
  • NumPy
  • jsonpickle (for configuration files)
  • torch (for baseline algorithms)

Installation

# install from pip
pip install gym-optimal-intrusion-response==1.0.0
# local install from source
$ pip install -e gym-optimal-intrusion-response
# force upgrade deps
$ pip install -e gym-optimal-intrusion-response --upgrade

# git clone and install from source
git clone https://github.com/Limmen/gym-optimal-intrusion-response
cd gym-optimal-intrusion-response
pip3 install -e .

Usage

The environment can be accessed like any other OpenAI environment with gym.make. Once the environment has been created, the API functions step(), reset(), render(), and close() can be used to train any RL algorithm of your preference.

import gym
from gym_idsgame.envs import IdsGameEnv
env_name = "optimal-intrusion-response-v1"
env = gym.make(env_name)

Infrastructure

Traces

Alert/login traces from the emulated infrastructure are available in (./traces).

Publications

@INPROCEEDINGS{hammar_stadler_cnsm_21,
AUTHOR="Kim Hammar and Rolf Stadler",
TITLE="Learning Intrusion Prevention Policies through Optimal Stopping",
BOOKTITLE="International Conference on Network and Service Management (CNSM 2021)",
ADDRESS="Izmir, Turkey",
DAYS=1,
YEAR=2021,
note={\url{http://dl.ifip.org/db/conf/cnsm/cnsm2021/1570732932.pdf}},
KEYWORDS="Network Security, automation, optimal stopping, reinforcement learning, Markov Decision Processes",
ABSTRACT="We study automated intrusion prevention using reinforcement learning. In a novel approach, we formulate the problem of intrusion prevention as an optimal stopping problem. This formulation allows us insight into the structure of the optimal policies, which turn out to be threshold based. Since the computation of the optimal defender policy using dynamic programming is not feasible for practical cases, we approximate the optimal policy through reinforcement learning in a simulation environment. To define the dynamics of the simulation, we emulate the target infrastructure and collect measurements. Our evaluations show that the learned policies are close to optimal and that they indeed can be expressed using thresholds."
}
@INPROCEEDINGS{Hamm2011:Finding,
AUTHOR="Kim Hammar and Rolf Stadler",
TITLE="Finding Effective Security Strategies through Reinforcement Learning and
{Self-Play}",
BOOKTITLE="International Conference on Network and Service Management (CNSM 2020)
(CNSM 2020)",
ADDRESS="Izmir, Turkey",
DAYS=1,
MONTH=nov,
YEAR=2020,
KEYWORDS="Network Security; Reinforcement Learning; Markov Security Games",
ABSTRACT="We present a method to automatically find security strategies for the use
case of intrusion prevention. Following this method, we model the
interaction between an attacker and a defender as a Markov game and let
attack and defense strategies evolve through reinforcement learning and
self-play without human intervention. Using a simple infrastructure
configuration, we demonstrate that effective security strategies can emerge
from self-play. This shows that self-play, which has been applied in other
domains with great success, can be effective in the context of network
security. Inspection of the converged policies show that the emerged
policies reflect common-sense knowledge and are similar to strategies of
humans. Moreover, we address known challenges of reinforcement learning in
this domain and present an approach that uses function approximation, an
opponent pool, and an autoregressive policy representation. Through
evaluations we show that our method is superior to two baseline methods but
that policy convergence in self-play remains a challenge."
}
@misc{hammar2021intrusion,
      title={Intrusion Prevention through Optimal Stopping}, 
      author={Kim Hammar and Rolf Stadler},
      year={2021},
      eprint={2111.00289},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

See also

Author & Maintainer

Kim Hammar [email protected]

Copyright and license

LICENSE

Creative Commons

(C) 2021, Kim Hammar

You might also like...
 Simulated garment dataset for virtual try-on
Simulated garment dataset for virtual try-on

Simulated garment dataset for virtual try-on This repository contains the dataset used in the following papers: Self-Supervised Collision Handling via

PINN Burgers - 1D Burgers equation simulated by PINN

PINN(s): Physics-Informed Neural Network(s) for Burgers equation This is an impl

POT : Python Optimal Transport

POT: Python Optimal Transport This open source Python library provide several solvers for optimization problems related to Optimal Transport for signa

Official implementation of our CVPR2021 paper
Official implementation of our CVPR2021 paper "OTA: Optimal Transport Assignment for Object Detection" in Pytorch.

OTA: Optimal Transport Assignment for Object Detection This project provides an implementation for our CVPR2021 paper "OTA: Optimal Transport Assignme

Exact Pareto Optimal solutions for preference based Multi-Objective Optimization

Exact Pareto Optimal solutions for preference based Multi-Objective Optimization

Code for paper "Vocabulary Learning via Optimal Transport for Neural Machine Translation"

**Codebase and data are uploaded in progress. ** VOLT(-py) is a vocabulary learning codebase that allows researchers and developers to automaticaly ge

A Planar RGB-D SLAM which utilizes Manhattan World structure to provide optimal camera pose trajectory while also providing a sparse reconstruction containing points, lines and planes, and a dense surfel-based reconstruction.
A Planar RGB-D SLAM which utilizes Manhattan World structure to provide optimal camera pose trajectory while also providing a sparse reconstruction containing points, lines and planes, and a dense surfel-based reconstruction.

ManhattanSLAM Authors: Raza Yunus, Yanyan Li and Federico Tombari ManhattanSLAM is a real-time SLAM library for RGB-D cameras that computes the camera

A Python library for differentiable optimal control on accelerators.

A Python library for differentiable optimal control on accelerators.

Developed an optimized algorithm which finds the most optimal path between 2 points in a 3D Maze using various AI search techniques like BFS, DFS, UCS, Greedy BFS and A*

Developed an optimized algorithm which finds the most optimal path between 2 points in a 3D Maze using various AI search techniques like BFS, DFS, UCS, Greedy BFS and A*. The algorithm was extremely optimal running in ~15s to ~30s for search spaces as big as 10000000 nodes where a set of 18 actions could be performed at each node in the 3D Maze.

Comments
  • gym-optimal-intrusion-response cannot gym.make

    gym-optimal-intrusion-response cannot gym.make

    After I installed gym-optimal-intrusion-response

    # git clone and install from source git clone https://github.com/Limmen/gym-optimal-intrusion-response cd gym-optimal-intrusion-response pip3 install -e .

    I use it by

    import gym from gym_idsgame.envs import IdsGameEnv env_name = "optimal-intrusion-response-v1" env = gym.make(env_name)

    but I had a problem

    gym.error.UnregisteredEnv: No registered env with id: optimal-intrusion-response-v1

    opened by wangzepeng111 4
  • May I ask you for how to start this project?

    May I ask you for how to start this project?

    I had read your paper Learning Intrusion Prevention Policies through Optimal Stopping, and have some problems,such as the defender policy against NOISYATTACKER and STEALTHYATTACKER, I don't know how it works. And your code import gym_pycr_ctf but I can't find this function

    opened by Arashiailing 2
Releases(1.0.0)
Owner
Kim Hammar
PhD @KTH, ML, Distributed systems, security & stuff. Previously @logicalclocks, Allstate, Ericsson.
Kim Hammar
Supervision Exists Everywhere: A Data Efficient Contrastive Language-Image Pre-training Paradigm

DeCLIP Supervision Exists Everywhere: A Data Efficient Contrastive Language-Image Pre-training Paradigm. Our paper is available in arxiv Updates ** Ou

Sense-GVT 470 Dec 30, 2022
[SIGMETRICS 2022] One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search

One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search paper | website One Proxy Device Is Enough for Hardware-Aware Neural Architec

10 Dec 16, 2022
Supplementary materials for ISMIR 2021 LBD paper "Evaluation of Latent Space Disentanglement in the Presence of Interdependent Attributes"

Evaluation of Latent Space Disentanglement in the Presence of Interdependent Attributes Supplementary materials for ISMIR 2021 LBD submission: K. N. W

Karn Watcharasupat 2 Oct 25, 2021
Official PyTorch code of Holistic 3D Scene Understanding from a Single Image with Implicit Representation (CVPR 2021)

Implicit3DUnderstanding (Im3D) [Project Page] Holistic 3D Scene Understanding from a Single Image with Implicit Representation Cheng Zhang, Zhaopeng C

Cheng Zhang 149 Jan 08, 2023
Experimental solutions to selected exercises from the book [Advances in Financial Machine Learning by Marcos Lopez De Prado]

Advances in Financial Machine Learning Exercises Experimental solutions to selected exercises from the book Advances in Financial Machine Learning by

Brian 1.4k Jan 04, 2023
Binary Stochastic Neurons in PyTorch

Binary Stochastic Neurons in PyTorch http://r2rt.com/binary-stochastic-neurons-in-tensorflow.html https://github.com/pytorch/examples/tree/master/mnis

Onur Kaplan 54 Nov 21, 2022
Multi-Person Extreme Motion Prediction

Multi-Person Extreme Motion Prediction Implementation for paper Wen Guo, Xiaoyu Bie, Xavier Alameda-Pineda, Francesc Moreno-Noguer, Multi-Person Extre

GUO-W 38 Nov 15, 2022
Underwater industrial application yolov5m6

This project wins the intelligent algorithm contest finalist award and stands out from over 2000teams in China Underwater Robot Professional Contest, entering the final of China Underwater Robot Prof

8 Nov 09, 2022
Which Style Makes Me Attractive? Interpretable Control Discovery and Counterfactual Explanation on StyleGAN

Interpretable Control Exploration and Counterfactual Explanation (ICE) on StyleGAN Which Style Makes Me Attractive? Interpretable Control Discovery an

Bo Li 11 Dec 01, 2022
Pytorch implementation of Generative Models as Distributions of Functions 🌿

Generative Models as Distributions of Functions This repo contains code to reproduce all experiments in Generative Models as Distributions of Function

Emilien Dupont 117 Dec 29, 2022
Model that predicts the probability of a Twitter user being anti-vaccination.

stylebody {text-align: justify}/style AVAXTAR: Anti-VAXx Tweet AnalyzeR AVAXTAR is a python package to identify anti-vaccine users on twitter. The

10 Sep 27, 2022
hipCaffe: the HIP port of Caffe

Caffe Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by the Berkeley Vision and Learning Cent

ROCm Software Platform 126 Dec 05, 2022
PyTorch implementation of Deep HDR Imaging via A Non-Local Network (TIP 2020).

NHDRRNet-PyTorch This is the PyTorch implementation of Deep HDR Imaging via A Non-Local Network (TIP 2020). 0. Differences between Original Paper and

Yutong Zhang 1 Mar 01, 2022
Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Zhengzhong Tu 5 Sep 16, 2022
Pytorch implementation of "Training a 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet"

Token Labeling: Training an 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet (arxiv) This is a Pytorch implementation of our te

蒋子航 383 Dec 27, 2022
This repository contains all source code, pre-trained models related to the paper "An Empirical Study on GANs with Margin Cosine Loss and Relativistic Discriminator"

An Empirical Study on GANs with Margin Cosine Loss and Relativistic Discriminator This is a Pytorch implementation for the paper "An Empirical Study o

Cuong Nguyen 3 Nov 15, 2021
Unofficial pytorch implementation of 'Image Inpainting for Irregular Holes Using Partial Convolutions'

pytorch-inpainting-with-partial-conv Official implementation is released by the authors. Note that this is an ongoing re-implementation and I cannot f

Naoto Inoue 525 Jan 01, 2023
A Python library that enables ML teams to share, load, and transform data in a collaborative, flexible, and efficient way :chestnut:

Squirrel Core Share, load, and transform data in a collaborative, flexible, and efficient way What is Squirrel? Squirrel is a Python library that enab

Merantix Momentum 249 Dec 07, 2022
Hand-distance-measurement-game - Hand Distance Measurement Game

Hand Distance Measurement Game This is program is made to calculate the distance

Priyansh 2 Jan 12, 2022
MAterial del programa Misión TIC 2022

Mision TIC 2022 Esta iniciativa, aparece como respuesta frente a los retos de la Cuarta Revolución Industrial, y tiene como objetivo la formación de 1

6 May 25, 2022