Implementation of self-attention mechanisms for general purpose. Focused on computer vision modules. Ongoing repository.

Overview

Self-attention building blocks for computer vision applications in PyTorch

Implementation of self attention mechanisms for computer vision in PyTorch with einsum and einops. Focused on computer vision self-attention modules.

Install it via pip

It would be nice to install pytorch in your enviroment, in case you don't have a GPU.

pip install self-attention-cv

Related articles

More articles are on the way.

Code Examples

Multi-head attention

import torch
from self_attention_cv import MultiHeadSelfAttention

model = MultiHeadSelfAttention(dim=64)
x = torch.rand(16, 10, 64)  # [batch, tokens, dim]
mask = torch.zeros(10, 10)  # tokens X tokens
mask[5:8, 5:8] = 1
y = model(x, mask)

Axial attention

import torch
from self_attention_cv import AxialAttentionBlock
model = AxialAttentionBlock(in_channels=256, dim=64, heads=8)
x = torch.rand(1, 256, 64, 64)  # [batch, tokens, dim, dim]
y = model(x)

Vanilla Transformer Encoder

import torch
from self_attention_cv import TransformerEncoder
model = TransformerEncoder(dim=64,blocks=6,heads=8)
x = torch.rand(16, 10, 64)  # [batch, tokens, dim]
mask = torch.zeros(10, 10)  # tokens X tokens
mask[5:8, 5:8] = 1
y = model(x,mask)

Vision Transformer with/without ResNet50 backbone for image classification

import torch
from self_attention_cv import ViT, ResNet50ViT

model1 = ResNet50ViT(img_dim=128, pretrained_resnet=False, 
                        blocks=6, num_classes=10, 
                        dim_linear_block=256, dim=256)
# or
model2 = ViT(img_dim=256, in_channels=3, patch_dim=16, num_classes=10,dim=512)
x = torch.rand(2, 3, 256, 256)
y = model2(x) # [2,10]

A re-implementation of Unet with the Vision Transformer encoder

import torch
from self_attention_cv.transunet import TransUnet
a = torch.rand(2, 3, 128, 128)
model = TransUnet(in_channels=3, img_dim=128, vit_blocks=8,
vit_dim_linear_mhsa_block=512, classes=5)
y = model(a) # [2, 5, 128, 128]

Bottleneck Attention block

import torch
from self_attention_cv.bottleneck_transformer import BottleneckBlock
inp = torch.rand(1, 512, 32, 32)
bottleneck_block = BottleneckBlock(in_channels=512, fmap_size=(32, 32), heads=4, out_channels=1024, pooling=True)
y = bottleneck_block(inp)

Position embeddings are also available

1D Positional Embeddings

import torch
from self_attention_cv.pos_embeddings import AbsPosEmb1D,RelPosEmb1D

model = AbsPosEmb1D(tokens=20, dim_head=64)
# batch heads tokens dim_head
q = torch.rand(2, 3, 20, 64)
y1 = model(q)

model = RelPosEmb1D(tokens=20, dim_head=64, heads=3)
q = torch.rand(2, 3, 20, 64)
y2 = model(q)

2D Positional Embeddings

import torch
from self_attention_cv.pos_embeddings import RelPosEmb2D
dim = 32  # spatial dim of the feat map
model = RelPosEmb2D(
    feat_map_size=(dim, dim),
    dim_head=128)

q = torch.rand(2, 4, dim*dim, 128)
y = model(q)

References

  1. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. arXiv preprint arXiv:1706.03762.
  2. Wang, H., Zhu, Y., Green, B., Adam, H., Yuille, A., & Chen, L. C. (2020, August). Axial-deeplab: Stand-alone axial-attention for panoptic segmentation. In European Conference on Computer Vision (pp. 108-126). Springer, Cham.
  3. Srinivas, A., Lin, T. Y., Parmar, N., Shlens, J., Abbeel, P., & Vaswani, A. (2021). Bottleneck Transformers for Visual Recognition. arXiv preprint arXiv:2101.11605.
  4. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., ... & Houlsby, N. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929.
Comments
  • Thank you very much for the code. But when I run test_TransUnet.py , It starts reporting errors. Why is that? Could you please help me solve it? Thank you

    Thank you very much for the code. But when I run test_TransUnet.py , It starts reporting errors. Why is that? Could you please help me solve it? Thank you

    Thank you very much for the code. But when I run test_TransUnet.py , It starts reporting errors. Why is that?I `Traceback (most recent call last): File "self-attention-cv/tests/test_TransUnet.py", line 14, in test_TransUnet() File "/self-attention-cv/tests/test_TransUnet.py", line 11, in test_TransUnet y = model(a) File "C:\Users\dell.conda\envs\myenv\lib\site-packages\torch\nn\modules\module.py", line 727, in _call_impl result = self.forward(*input, **kwargs) File "self-attention-cv\self_attention_cv\transunet\trans_unet.py", line 88, in forward y = self.project_patches_back(y) File "C:\Users\dell.conda\envs\myenv\lib\site-packages\torch\nn\modules\module.py", line 727, in _call_impl result = self.forward(*input, **kwargs) File "C:\Users\dell.conda\envs\myenv\lib\site-packages\torch\nn\modules\linear.py", line 93, in forward return F.linear(input, self.weight, self.bias) File "C:\Users\dell.conda\envs\myenv\lib\site-packages\torch\nn\functional.py", line 1692, in linear output = input.matmul(weight.t()) RuntimeError: mat1 dim 1 must match mat2 dim 0

    Process finished with exit code 1 ` Could you please help me solve it? Thank you.

    opened by yezhengjie 7
  • TransUNet - Why is the patch_dim set to 1?

    TransUNet - Why is the patch_dim set to 1?

    Hi,

    Can you please explain why is the patch_dim set to 1 in TransUNet class? Thank you in advance!

    https://github.com/The-AI-Summer/self-attention-cv/blob/8280009366b633921342db6cab08da17b46fdf1c/self_attention_cv/transunet/trans_unet.py#L54

    opened by dsitnik 7
  • Question: Sliding Window Module for Transformer3dSeg Object

    Question: Sliding Window Module for Transformer3dSeg Object

    I was wondering whether or not you've implemented an example using the network in a 3d medical segmentation task and/or use case? If this network only exports the center slice of a patch then we would need a wrapper function to iterate through all patches in an image to get the final prediction for the entire volume. From the original paper, I assume they choose 10 patches at random from an image during training, but it's not too clear how they pieced everything together during testing.

    Your thoughts on this would be greatly appreciated!

    See: https://github.com/The-AI-Summer/self-attention-cv/blob/33ddf020d2d9fb9c4a4a3b9938383dc9b7405d8c/self_attention_cv/Transformer3Dsegmentation/tranf3Dseg.py#L10

    opened by jmarsil 5
  • ResNet + Pyramid Vision Transformer Version 2

    ResNet + Pyramid Vision Transformer Version 2

    Thank you for your work with a clear explanation. As you know, ViT doesn't work on small datasets and I am implementing ResNet34 with Pyramid Vision Transformer Version 2 to make it better. The architecture of ViT and PVT V2 is completely different. Could you provide me some help to implement it? please

    opened by khawar-islam 3
  • Request for Including UNETR

    Request for Including UNETR

    Thanks for great work ! I noticed nice implementation of this paper (https://arxiv.org/abs/2103.10504) here:

    https://github.com/tamasino52/UNETR/blob/main/unetr.py

    It would be great if this can also be included in your repo, since it comes with lots of other great features. So we can explore more.

    Thanks ~

    opened by Siyuan89 3
  • ImageNet Pretrained TimesFormer

    ImageNet Pretrained TimesFormer

    I see you have recently added the TimesFormer model to this repository. In the paper, they initialize their model weights from ImageNet pretrained weights of ViT. Does your implementation offer this too? Thanks!

    opened by RaivoKoot 3
  • Do the encoder modules incorporate positional encoding?

    Do the encoder modules incorporate positional encoding?

    I am wondering if I use say the LinformerEncoder if I have to add the position encoding or if that's already done? From the source files it doesn't seem to be there, but I'm not sure how to include the position encoding as they seem to need the query which isn't available when just passing data directly to the LinformerEncoder. I very well may be missing something any help would be great. Perhaps an example using positional encoding would be good.

    opened by jfkback 3
  • use AxialAttention on gpu

    use AxialAttention on gpu

    I try to use AxialAttention on gpu, but I get a mistake.Can you give me some tips about using AxialAttention on gpu. Thanks! mistake: RuntimeError: expected self and mask to be on the same device, but got mask on cpu and self on cuda:0

    opened by Iverson-Al 2
  • Axial attention

    Axial attention

    What is the meaning of qkv_channels? https://github.com/The-AI-Summer/self-attention-cv/blob/5246e550ecb674f60df76a6c1011fde30ded7f44/self_attention_cv/axial_attention_deeplab/axial_attention.py#L32

    opened by Jayden9912 1
  • Convolution-Free Medical Image Segmentation using Transformers

    Convolution-Free Medical Image Segmentation using Transformers

    Thank you very much for your contribution. As a novice, I have a doubt. In tranf3dseg, the output of the model is the prediction segmentation of the center patch, so how can I get the segmentation of the whole input image? I am looking forward to any reply.

    opened by WinsaW 1
  • Regression with attention

    Regression with attention

    Hello!

    thanks for sharing this nice repo :)

    I'm trying to use ViT to do regression on images. I'd like to predict 6 floats per image.

    My understanding is that I'd need to simply define the network as

    vit = ViT(img_dim=128,
                   in_channels=3,
                   patch_dim=16,
                   num_classes=6,
                   dim=512)
    

    and during training call

    vit(x)
    

    and compute the loss as MSE instead of CE.

    The network actually runs but it doesn't seem to converge. Is there something obvious I am missing?

    many thanks!

    opened by alemelis 1
  • Segmentation for full image

    Segmentation for full image

    Hi,

    Thank you for your effort and time in implementing this. I have a quick question, I want to get segmentation for full image not just for the middle token, would it be correct to change self.tokens to self.p here:

    https://github.com/The-AI-Summer/self-attention-cv/blob/5246e550ecb674f60df76a6c1011fde30ded7f44/self_attention_cv/Transformer3Dsegmentation/tranf3Dseg.py#L66

    and change this:

    https://github.com/The-AI-Summer/self-attention-cv/blob/5246e550ecb674f60df76a6c1011fde30ded7f44/self_attention_cv/Transformer3Dsegmentation/tranf3Dseg.py#L94

    to

    y = self.mlp_seg_head(y)

    opened by aqibsaeed 0
Releases(1.2.3)
Owner
AI Summer
Learn Deep Learning and Artificial Intelligence
AI Summer
Medical-Image-Triage-and-Classification-System-Based-on-COVID-19-CT-and-X-ray-Scan-Dataset

Medical-Image-Triage-and-Classification-System-Based-on-COVID-19-CT-and-X-ray-Sc

2 Dec 26, 2021
Code to reproduce the results in "Visually Grounded Reasoning across Languages and Cultures", EMNLP 2021.

marvl-code [WIP] This is the implementation of the approaches described in the paper: Fangyu Liu*, Emanuele Bugliarello*, Edoardo M. Ponti, Siva Reddy

25 Nov 15, 2022
Numenta published papers code and data

Numenta research papers code and data This repository contains reproducible code for selected Numenta papers. It is currently under construction and w

Numenta 293 Jan 06, 2023
22 Oct 14, 2022
Voice control for Garry's Mod

WIP: Talonvoice GMod integrations Very work in progress voice control demo for Garry's Mod. HOWTO Install https://talonvoice.com/ Press https://i.imgu

Meta Construct 5 Nov 15, 2022
Segmentation for medical image.

EfficientSegmentation Introduction EfficientSegmentation is an open source, PyTorch-based segmentation framework for 3D medical image. Features A whol

68 Nov 28, 2022
A Human-in-the-Loop workflow for creating HD images from text

A Human-in-the-Loop? workflow for creating HD images from text DALL·E Flow is an interactive workflow for generating high-definition images from text

Jina AI 2.5k Jan 02, 2023
Learning to Prompt for Continual Learning

Learning to Prompt for Continual Learning (L2P) Official Jax Implementation L2P is a novel continual learning technique which learns to dynamically pr

Google Research 207 Jan 06, 2023
S2s2net - Sentinel-2 Super-Resolution Segmentation Network

S2S2Net Sentinel-2 Super-Resolution Segmentation Network Getting started Install

Wei Ji 10 Nov 10, 2022
CV backbones including GhostNet, TinyNet and TNT, developed by Huawei Noah's Ark Lab.

CV Backbones including GhostNet, TinyNet, TNT (Transformer in Transformer) developed by Huawei Noah's Ark Lab. GhostNet Code TinyNet Code TNT Code Pyr

HUAWEI Noah's Ark Lab 3k Jan 08, 2023
Driller: augmenting AFL with symbolic execution!

Driller Driller is an implementation of the driller paper. This implementation was built on top of AFL with angr being used as a symbolic tracer. Dril

Shellphish 791 Jan 06, 2023
Vision Transformer and MLP-Mixer Architectures

Vision Transformer and MLP-Mixer Architectures Update (2.7.2021): Added the "When Vision Transformers Outperform ResNets..." paper, and SAM (Sharpness

Google Research 6.4k Jan 04, 2023
Code for CVPR 2021 paper TransNAS-Bench-101: Improving Transferrability and Generalizability of Cross-Task Neural Architecture Search.

TransNAS-Bench-101 This repository contains the publishable code for CVPR 2021 paper TransNAS-Bench-101: Improving Transferrability and Generalizabili

Yawen Duan 17 Nov 20, 2022
Gluon CV Toolkit

Gluon CV Toolkit | Installation | Documentation | Tutorials | GluonCV provides implementations of the state-of-the-art (SOTA) deep learning models in

Distributed (Deep) Machine Learning Community 5.4k Jan 06, 2023
BalaGAN: Image Translation Between Imbalanced Domains via Cross-Modal Transfer

BalaGAN: Image Translation Between Imbalanced Domains via Cross-Modal Transfer Project Page | Paper | Video State-of-the-art image-to-image translatio

47 Dec 06, 2022
Progressive Growing of GANs for Improved Quality, Stability, and Variation

Progressive Growing of GANs for Improved Quality, Stability, and Variation — Official TensorFlow implementation of the ICLR 2018 paper Tero Karras (NV

Tero Karras 5.9k Jan 05, 2023
The open-source and free to use Python package miseval was developed to establish a standardized medical image segmentation evaluation procedure

miseval: a metric library for Medical Image Segmentation EVALuation The open-source and free to use Python package miseval was developed to establish

59 Dec 10, 2022
Code for the paper titled "Generalized Depthwise-Separable Convolutions for Adversarially Robust and Efficient Neural Networks" (NeurIPS 2021 Spotlight).

Generalized Depthwise-Separable Convolutions for Adversarially Robust and Efficient Neural Networks This repository contains the code and pre-trained

Hassan Dbouk 7 Dec 05, 2022
Scientific Computation Methods in C and Python (Open for Hacktoberfest 2021)

Sci - cpy README is a stub. Do expand it. Objective This repository is meant to be a ready reference for scientific computation methods. Do ⭐ it if yo

Sandip Dutta 7 Oct 12, 2022
Supervised forecasting of sequential data in Python.

Supervised forecasting of sequential data in Python. Intro Supervised forecasting is the machine learning task of making predictions for sequential da

The Alan Turing Institute 54 Nov 15, 2022