Numenta published papers code and data

Overview

Numenta research papers code and data

This repository contains reproducible code for selected Numenta papers. It is currently under construction and will eventually include the source code for all the scripts used in Numenta's papers.

Grid Cell Path Integration For Movement-Based Visual Object Recognition

This paper demonstrates the implementation of a sensorimotor network that uses grid-cell computations to process a sequence of visual inputs, specifically a sequence of image patches from the MNIST dataset. The network is able to classify novel digits (as well as perform other tasks) in a way that is robust to the specific sequence over which the visual space is sampled, a challenging setting for typical machine learning approaches. The work builds on our previous paper, “Locations in the Neocortex."

Sources

Going Beyond the Point Neuron: Active Dendrites and Sparse Representations for Continual Learning

In this paper we investigate how dendritic properties can add value to ANNs in the context of continual learning, an area where ANNs suffer from catastrophic forgetting

Sources

How Can We Be So Dense? The Benefits of Using Highly Sparse Representations

In this paper we discuss inherent benefits of high dimensional sparse representations. We focus on robustness and sensitivity to interference. These are central issues with today’s neural network systems where even small and large perturbations can cause dramatic changes to a network’s output.

Sources

Locations in the Neocortex: A Theory of Sensorimotor Object Recognition Using Cortical Grid Cells

This paper provides an implementation for a location layer with grid-like modules that encode object-specific locations. This layer is incorpated into a network with an input layer and simulations show how the model can learn many complex objects and later infer which learned object is being sensed.

Sources

A Theory of How Columns in the Neocortex Enable Learning the Structure of the World

This paper proposes a network model composed of columns and layers that performs robust object learning and recognition. The model introduces a new feature to cortical columns, location information, which is represented relative to the object being sensed. Pairing sensory features with locations is a requirement for modeling objects and therefore must occur somewhere in the neocortex. We propose it occurs in every column in every region.

Sources

The HTM Spatial Pooler – a neocortical algorithm for online sparse distributed coding

This paper describes an important component of HTM, the HTM spatial pooler, which is a neurally inspired algorithm that learns sparse distributed representations online. Written from a neuroscience perspective, the paper demonstrates key computational properties of HTM spatial pooler.

Sources

Evaluating Real-time Anomaly Detection Algorithms - the Numenta Anomaly Benchmark

14th IEEE ICMLA 2015 - This paper discusses how we should think about anomaly detection for streaming applications. It introduces a new open-source benchmark for detecting anomalies in real-time, time-series data.

Sources

Unsupervised Real-Time Anomaly Detection for Streaming Data

This paper discusses the requirements necessary for real-time anomaly detection in streaming data, and demonstrates how Numenta's online sequence memory algorithm, HTM, meets those requirements. It presents detailed results using the Numenta Anomaly Benchmark (NAB), the first open-source benchmark designed for testing real-time anomaly detection algorithms.

Sources

Why Neurons Have Thousands of Synapses, A Theory of Sequence Memory in Neocortex

Foundational paper describing core HTM theory for sequence memory and its relationship to the neocortex. Written with a neuroscience perspective, the paper explains why neurons need so many synapses and how networks of neurons can form a powerful sequence learning mechanism.

Sources

Owner
Numenta
Biologically inspired machine intelligence
Numenta
PyTorch implementation DRO: Deep Recurrent Optimizer for Structure-from-Motion

DRO: Deep Recurrent Optimizer for Structure-from-Motion This is the official PyTorch implementation code for DRO-sfm. For technical details, please re

Alibaba Cloud 56 Dec 12, 2022
Unsupervised Representation Learning by Invariance Propagation

Unsupervised Learning by Invariance Propagation This repository is the official implementation of Unsupervised Learning by Invariance Propagation. Pre

FengWang 15 Jul 06, 2022
Code for Reciprocal Adversarial Learning for Brain Tumor Segmentation: A Solution to BraTS Challenge 2021 Segmentation Task

BRATS 2021 Solution For Segmentation Task This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmenta

Himashi Amanda Peiris 6 Sep 15, 2022
Extreme Lightwegith Portrait Segmentation

Extreme Lightwegith Portrait Segmentation Please go to this link to download code Requirements python 3 pytorch = 0.4.1 torchvision==0.2.1 opencv-pyt

HYOJINPARK 59 Dec 16, 2022
Pytorch implementation of the paper "Optimization as a Model for Few-Shot Learning"

Optimization as a Model for Few-Shot Learning This repo provides a Pytorch implementation for the Optimization as a Model for Few-Shot Learning paper.

Albert Berenguel Centeno 238 Jan 04, 2023
How the Deep Q-learning method works and discuss the new ideas that makes the algorithm work

Deep Q-Learning Recommend papers The first step is to read and understand the method that you will implement. It was first introduced in a 2013 paper

1 Jan 25, 2022
통일된 DataScience 폴더 구조 제공 및 가상환경 작업의 부담감 해소

Lucas coded by linux shell 목차 Mac버전 CookieCutter (autoenv) 1.How to Install autoenv 2.폴더 진입 시, activate 구현하기 3.폴더 탈출 시, deactivate 구현하기 4.Alias 설정하기 5

ello 3 Feb 21, 2022
FS-Mol: A Few-Shot Learning Dataset of Molecules

FS-Mol is A Few-Shot Learning Dataset of Molecules, containing molecular compounds with measurements of activity against a variety of protein targets. The dataset is presented with a model evaluation

Microsoft 114 Dec 15, 2022
FuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space OptimizationFuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space Optimization

FuseDream This repo contains code for our paper (paper link): FuseDream: Training-Free Text-to-Image Generation with Improved CLIP+GAN Space Optimizat

XCL 191 Dec 31, 2022
All course materials for the Zero to Mastery Machine Learning and Data Science course.

Zero to Mastery Machine Learning Welcome! This repository contains all of the code, notebooks, images and other materials related to the Zero to Maste

Daniel Bourke 1.6k Jan 08, 2023
This Artificial Intelligence program can take a black and white/grayscale image and generate a realistic or plausible colorized version of the same picture.

Colorizer The point of this project is to write a program capable of taking a black and white / grayscale image, and generating a realistic or plausib

Maitri Shah 1 Jan 06, 2022
Detectron2-FC a fast construction platform of neural network algorithm based on detectron2

What is Detectron2-FC Detectron2-FC a fast construction platform of neural network algorithm based on detectron2. We have been working hard in two dir

董晋宗 9 Jun 06, 2022
GNN-based Recommendation Benchma

GRecX A Fair Benchmark for GNN-based Recommendation Preliminary Comparison DiffNet-Yelp dataset (featureless) Algo 73 Oct 17, 2022

A unified framework for machine learning with time series

Welcome to sktime A unified framework for machine learning with time series We provide specialized time series algorithms and scikit-learn compatible

The Alan Turing Institute 6k Jan 08, 2023
Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning

isvd Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning If you find this code useful, you may cite us as: @inprocee

Sami Abu-El-Haija 16 Jan 08, 2023
Clinica is a software platform for clinical research studies involving patients with neurological and psychiatric diseases and the acquisition of multimodal data

Clinica Software platform for clinical neuroimaging studies Homepage | Documentation | Paper | Forum | See also: AD-ML, AD-DL ClinicaDL About The Proj

ARAMIS Lab 165 Dec 29, 2022
pytorch implementation of fast-neural-style

fast-neural-style 🌇 🚀 NOTICE: This codebase is no longer maintained, please use the codebase from pytorch examples repository available at pytorch/e

Abhishek Kadian 405 Dec 15, 2022
C3D is a modified version of BVLC caffe to support 3D ConvNets.

C3D C3D is a modified version of BVLC caffe to support 3D convolution and pooling. The main supporting features include: Training or fine-tuning 3D Co

Meta Archive 1.1k Nov 14, 2022
automatic color-grading

color-matcher Description color-matcher enables color transfer across images which comes in handy for automatic color-grading of photographs, painting

hahnec 168 Jan 05, 2023
rliable is an open-source Python library for reliable evaluation, even with a handful of runs, on reinforcement learning and machine learnings benchmarks.

Open-source library for reliable evaluation on reinforcement learning and machine learning benchmarks. See NeurIPS 2021 oral for details.

Google Research 529 Jan 01, 2023