RINDNet: Edge Detection for Discontinuity in Reflectance, Illumination, Normal and Depth, in ICCV 2021 (oral)

Overview

RINDNet

RINDNet: Edge Detection for Discontinuity in Reflectance, Illumination, Normal and Depth
Mengyang Pu, Yaping Huang, Qingji Guan and Haibin Ling
ICCV 2021 (oral)

Please refer to supplementary material (code:p86d) (~60M) for more results.

Benchmark --- ๐Ÿ”ฅ ๐Ÿ”ฅ BSDS-RIND ๐Ÿ”ฅ ๐Ÿ”ฅ

BSDS-RIND is the first public benchmark that dedicated to studying simultaneously the four edge types, namely Reflectance Edge (RE), Illumination Edge (IE), Normal Edge (NE) and Depth Edge (DE). It is created by carefully labeling images from the BSDS500. The datasets can be downloaded from:

Abstract

As a fundamental building block in computer vision, edges can be categorised into four types according to the discontinuity in surface-Reflectance, Illumination, surface-Normal or Depth. While great progress has been made in detecting generic or individual types of edges, it remains under-explored to comprehensively study all four edge types together. In this paper, we propose a novel neural network solution, RINDNet, to jointly detect all four types of edges. Taking into consideration the distinct attributes of each type of edges and the relationship between them, RINDNet learns effective representations for each of them and works in three stages. In stage I, RINDNet uses a common backbone to extract features shared by all edges. Then in stage II it branches to prepare discriminative features for each edge type by the corresponding decoder. In stage III, an independent decision head for each type aggregates the features from previous stages to predict the initial results. Additionally, an attention module learns attention maps for all types to capture the underlying relations between them, and these maps are combined with initial results to generate the final edge detection results. For training and evaluation, we construct the first public benchmark, BSDS-RIND, with all four types of edges carefully annotated. In our experiments, RINDNet yields promising results in comparison with state-of-the-art methods.

Code and Main results ----- Coming Soon...

Acknowledgments

  • The work is partially done while Mengyang was at Stony Brook University.
  • We thank the anonymous reviewers for valuable and inspiring comments and suggestions.
Owner
Mengyang Pu
Mengyang Pu
ใ€ŠWhere am I looking at? Joint Location and Orientation Estimation by Cross-View Matchingใ€‹(CVPR 2020)

This contains the codes for cross-view geo-localization method described in: Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching, CVPR2020.

41 Oct 27, 2022
Deep Image Matting implementation in PyTorch

Deep Image Matting Deep Image Matting paper implementation in PyTorch. Differences "fc6" is dropped. Indices pooling. "fc6" is clumpy, over 100 millio

Yang Liu 724 Dec 27, 2022
Prediction of MBA refinance Index (Mortgage prepayment)

Prediction of MBA refinance Index (Mortgage prepayment) Deep Neural Network based Model The ability to predict mortgage prepayment is of critical use

Ruchil Barya 1 Jan 16, 2022
This repository includes different versions of the prescribed-time controller as Simulink blocks and MATLAB script codes for engineering applications.

Prescribed-time Control Prescribed-time control (PTC) blocks in Simulink environment, MATLAB R2020b. For more theoretical details, refer to the papers

Amir Shakouri 1 Mar 11, 2022
Degree-Quant: Quantization-Aware Training for Graph Neural Networks.

Degree-Quant This repo provides a clean re-implementation of the code associated with the paper Degree-Quant: Quantization-Aware Training for Graph Ne

35 Oct 07, 2022
OpenL3: Open-source deep audio and image embeddings

OpenL3 OpenL3 is an open-source Python library for computing deep audio and image embeddings. Please refer to the documentation for detailed instructi

Music and Audio Research Laboratory - NYU 326 Jan 02, 2023
Facilitates implementing deep neural-network backbones, data augmentations

Introduction Nowadays, the training of Deep Learning models is fragmented and unified. When AI engineers face up with one specific task, the common wa

40 Dec 29, 2022
Random Walk Graph Neural Networks

Random Walk Graph Neural Networks This repository is the official implementation of Random Walk Graph Neural Networks. Requirements Code is written in

Giannis Nikolentzos 38 Jan 02, 2023
NovelD: A Simple yet Effective Exploration Criterion

NovelD: A Simple yet Effective Exploration Criterion Intro This is an implementation of the method proposed in NovelD: A Simple yet Effective Explorat

29 Dec 05, 2022
Code accompanying our NeurIPS 2021 traffic4cast challenge

Traffic forecasting on traffic movie snippets This repo contains all code to reproduce our approach to the IARAI Traffic4cast 2021 challenge. In the c

Nina Wiedemann 2 Aug 09, 2022
The official implementation for ACL 2021 "Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval".

Code for "Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval" (ACL 2021, Long) This is the repository for baseline m

Akari Asai 25 Oct 30, 2022
COVID-Net Open Source Initiative

The COVID-Net models provided here are intended to be used as reference models that can be built upon and enhanced as new data becomes available

Linda Wang 1.1k Dec 26, 2022
Attention over nodes in Graph Neural Networks using PyTorch (NeurIPS 2019)

Intro This repository contains code to generate data and reproduce experiments from our NeurIPS 2019 paper: Boris Knyazev, Graham W. Taylor, Mohamed R

Boris Knyazev 242 Jan 06, 2023
๐Ÿƒโ€โ™€๏ธ A curated list about human motion capture, analysis and synthesis.

Awesome Human Motion ๐Ÿƒโ€โ™€๏ธ A curated list about human motion capture, analysis and synthesis. Contents Introduction Human Models Datasets Data Process

Dennis Wittchen 274 Dec 14, 2022
Tensors and neural networks in Haskell

Hasktorch Hasktorch is a library for tensors and neural networks in Haskell. It is an independent open source community project which leverages the co

hasktorch 920 Jan 04, 2023
A pytorch reproduction of { Co-occurrence Feature Learning from Skeleton Data for Action Recognition and Detection with Hierarchical Aggregation }.

A PyTorch Reproduction of HCN Co-occurrence Feature Learning from Skeleton Data for Action Recognition and Detection with Hierarchical Aggregation. Ch

Guyue Hu 210 Dec 31, 2022
HNN: Human (Hollywood) Neural Network

HNN: Human (Hollywood) Neural Network Learn the top 1000 actors on IMDB with your very own low cost, highly parallel, CUDAless biological neural netwo

Madhava Jay 0 Dec 21, 2021
Differentiable Optimizers with Perturbations in Pytorch

Differentiable Optimizers with Perturbations in PyTorch This contains a PyTorch implementation of Differentiable Optimizers with Perturbations in Tens

Jake Tuero 54 Jun 22, 2022
Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at [email protected]

TableParser Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at DS3 Lab 11 Dec 13, 2022

Trajectory Extraction of road users via Traffic Camera

Traffic Monitoring Citation The associated paper for this project will be published here as soon as possible. When using this software, please cite th

Julian Strosahl 14 Dec 17, 2022