Deep Image Matting implementation in PyTorch

Overview

Deep Image Matting

Deep Image Matting paper implementation in PyTorch.

Differences

  1. "fc6" is dropped.
  2. Indices pooling.

"fc6" is clumpy, over 100 millions parameters, makes the model hard to converge. I guess it is the reason why the model (paper) has to be trained stagewisely.

Performance

  • The Composition-1k testing dataset.
  • Evaluate with whole image.
  • SAD normalized by 1000.
  • Input image is normalized with mean=[0.485, 0.456, 0.406] and std=[0.229, 0.224, 0.225].
  • Both erode and dialte to generate trimap.
Models SAD MSE Download
paper-stage0 59.6 0.019
paper-stage1 54.6 0.017
paper-stage3 50.4 0.014
my-stage0 66.8 0.024 Link

Dependencies

  • Python 3.5.2
  • PyTorch 1.1.0

Dataset

Adobe Deep Image Matting Dataset

Follow the instruction to contact author for the dataset.

MSCOCO

Go to MSCOCO to download:

PASCAL VOC

Go to PASCAL VOC to download:

Usage

Data Pre-processing

Extract training images:

$ python pre_process.py

Train

$ python train.py

If you want to visualize during training, run in your terminal:

$ tensorboard --logdir runs

Experimental results

The Composition-1k testing dataset

  1. Test:
$ python test.py

It prints out average SAD and MSE errors when finished.

The alphamatting.com dataset

  1. Download the evaluation datasets: Go to the Datasets page and download the evaluation datasets. Make sure you pick the low-resolution dataset.

  2. Extract evaluation images:

$ python extract.py
  1. Evaluate:
$ python eval.py

Click to view whole images:

Image Trimap1 Trimap2 Trimap3
image image image image
image image image image
image image image image
image image image image
image image image image
image image image image
image image image image
image image image image
image image image image
image image image image
image image image image
image image image image
image image image image
image image image image
image image image image
image image image image

Demo

Download pre-trained Deep Image Matting Link then run:

$ python demo.py
Image/Trimap Output/GT New BG/Compose
image image image
image image image
image image image
image image image
image image image
image image image
image image image
image image image
image image image
image image image
image image image
image image image
image image image
image image image
image image image
image image image
image image image
image image image
image image image
image image image

小小的赞助~

Sample

若对您有帮助可给予小小的赞助~




Comments
  • the frozen model named BEST_checkpoint.tar cannot be uncompressed

    the frozen model named BEST_checkpoint.tar cannot be uncompressed

    when I try to uncompress the frozen model it shows

    tar: This does not look like a tar archive tar: Skipping to next header tar: Exiting with failure status due to previous errors

    this means the .tar file is not complete

    opened by banrenmasanxing 6
  • my own datasets are all full human body images

    my own datasets are all full human body images

    Hi,thanks for your excellent work.Now i prepare my own datasets.This datasets are consists of thounds of high resolution image(average 4000*4000).They are all full human body images.When i process these images,i meet a questions: When i crop the trimap(generated from alpha),often crop some places which are not include hair.Such as foot,leg.Is it ok to input these images into [email protected]

    opened by lfxx 5
  • run demo.py question!

    run demo.py question!

    File "demo.py", line 84, in new_bgs = random.sample(new_bgs, 10) File "C:\Users\15432\AppData\Local\conda\conda\envs\python34\lib\random.py", line 324, in sample raise ValueError("Sample larger than population") ValueError: Sample larger than population

    opened by kxcg99 5
  • Invalid BEST_checkpoint.tar ?

    Invalid BEST_checkpoint.tar ?

    Hi, thank you for the code. I tried to download the pretrained model and extract it but it dosnt work.

    tar xvf BEST_checkpoint.tar BEST_checkpoint
    

    results in

    tar: Ceci ne ressemble pas à une archive de type « tar »
    tar: On saute à l'en-tête suivant
    tar: BEST_checkpoint : non trouvé dans l'archive
    tar: Arrêt avec code d'échec à cause des erreurs précédentes
    

    anything i'm doing the wrong way ? or the provided tar is not valid ? kind reards

    opened by flocreate 4
  • How can i get the Trimaps of my pictures?

    How can i get the Trimaps of my pictures?

    Now, I got a model, I want to use it but I can't, because I have not the Trimaps of my pictures. Are there the script of code to build the Trimaps? How can i get the Trimaps of my pictures?

    opened by huangjunxiong11 3
  • can not unpack the 'BEST_checkpoint.tar'

    can not unpack the 'BEST_checkpoint.tar'

    When i download the file "BEST_checkpoint.tar" successfully, i can't unpack it. Actually, when i try to unpack 'BEST_checkpoint.tar', it make an error. Is it my fault , or, Is the file mistaken?

    opened by huangjunxiong11 3
  • Demo error

    Demo error

    /Users/7plus/opt/anaconda3/lib/python3.7/site-packages/torch/serialization.py:435: SourceChangeWarning: source code of class 'torch.nn.parallel.data_parallel.DataParallel' has changed. you can retrieve the original source code by accessing the object's source attribute or set torch.nn.Module.dump_patches = True and use the patch tool to revert the changes. warnings.warn(msg, SourceChangeWarning) /Users/7plus/opt/anaconda3/lib/python3.7/site-packages/torch/serialization.py:435: SourceChangeWarning: source code of class 'torch.nn.modules.conv.Conv2d' has changed. you can retrieve the original source code by accessing the object's source attribute or set torch.nn.Module.dump_patches = True and use the patch tool to revert the changes. warnings.warn(msg, SourceChangeWarning) Traceback (most recent call last): File "demo.py", line 69, in checkpoint = torch.load(checkpoint) File "/Users/7plus/opt/anaconda3/lib/python3.7/site-packages/torch/serialization.py", line 368, in load return _load(f, map_location, pickle_module) File "/Users/7plus/opt/anaconda3/lib/python3.7/site-packages/torch/serialization.py", line 542, in _load result = unpickler.load() File "/Users/7plus/opt/anaconda3/lib/python3.7/site-packages/torch/serialization.py", line 505, in persistent_load data_type(size), location) File "/Users/7plus/opt/anaconda3/lib/python3.7/site-packages/torch/serialization.py", line 114, in default_restore_location result = fn(storage, location) File "/Users/7plus/opt/anaconda3/lib/python3.7/site-packages/torch/serialization.py", line 95, in _cuda_deserialize device = validate_cuda_device(location) File "/Users/7plus/opt/anaconda3/lib/python3.7/site-packages/torch/serialization.py", line 79, in validate_cuda_device raise RuntimeError('Attempting to deserialize object on a CUDA ' RuntimeError: Attempting to deserialize object on a CUDA device but torch.cuda.is_available() is False. If you are running on a CPU-only machine, please use torch.load with map_location='cpu' to map your storages to the CPU.

    opened by Mlt123 3
  • Deep-Image-Matting-v2 implemetation on Android

    Deep-Image-Matting-v2 implemetation on Android

    Hi, Thanks for you work! its looking awesome output. I want to integrate your demo into android project. Is it possible to integrate model into android Project? If it possible, then How can i integrate this model into android project? Can you please give some suggestions? Thanks in advance.

    opened by charlizesmith 3
  • unable to start training using pretrained weigths

    unable to start training using pretrained weigths

    whenever pre-trained weights are used for training the model using own dataset, the following error is occurring.

    python3 train.py --batch-size 4 --checkpoint checkpoint/BEST_checkpoint.tar

    /usr/local/lib/python3.5/dist-packages/torch/serialization.py:454: SourceChangeWarning: source code of class 'torch.nn.parallel.data_parallel.DataParallel' has changed. you can retrieve the original source code by accessing the object's source attribute or set torch.nn.Module.dump_patches = True and use the patch tool to revert the changes. warnings.warn(msg, SourceChangeWarning) /usr/local/lib/python3.5/dist-packages/torch/serialization.py:454: SourceChangeWarning: source code of class 'torch.nn.modules.conv.Conv2d' has changed. you can retrieve the original source code by accessing the object's source attribute or set torch.nn.Module.dump_patches = True and use the patch tool to revert the changes. warnings.warn(msg, SourceChangeWarning) /usr/local/lib/python3.5/dist-packages/torch/serialization.py:454: SourceChangeWarning: source code of class 'torch.nn.modules.batchnorm.BatchNorm2d' has changed. you can retrieve the original source code by accessing the object's source attribute or set torch.nn.Module.dump_patches = True and use the patch tool to revert the changes. warnings.warn(msg, SourceChangeWarning) /usr/local/lib/python3.5/dist-packages/torch/serialization.py:454: SourceChangeWarning: source code of class 'torch.nn.modules.activation.ReLU' has changed. you can retrieve the original source code by accessing the object's source attribute or set torch.nn.Module.dump_patches = True and use the patch tool to revert the changes. warnings.warn(msg, SourceChangeWarning) Traceback (most recent call last): File "train.py", line 180, in main() File "train.py", line 176, in main train_net(args) File "train.py", line 71, in train_net logger=logger) File "train.py", line 112, in train alpha_out = model(img) # [N, 3, 320, 320] File "/usr/local/lib/python3.5/dist-packages/torch/nn/modules/module.py", line 493, in call result = self.forward(*input, **kwargs) File "/usr/local/lib/python3.5/dist-packages/torch/nn/parallel/data_parallel.py", line 143, in forward if t.device != self.src_device_obj: File "/usr/local/lib/python3.5/dist-packages/torch/nn/modules/module.py", line 539, in getattr type(self).name, name)) AttributeError: 'DataParallel' object has no attribute 'src_device_obj'

    opened by dev-srikanth 3
  • v2 didn't performance well as v1?

    v2 didn't performance well as v1?

    Hi, thanks for your pretrained model! I test both your v1 pretrained model and v2 pretrained model , v2 is much faster than v1 , but I found it didn't performance well as v1. the image: WechatIMG226 the origin tri map: test7_tri the v1 output: WechatIMG225 the v2 output: test7_result

    do you know what's the problem?

    Thanks,

    opened by MarSaKi 3
  • Questions about the PyTorch version and an issue in training regarding to the batch size

    Questions about the PyTorch version and an issue in training regarding to the batch size

    Hi,

    Thank you for sharing your PyTorch version of reimplementation. Would you like to share the PyTorch version you used to development?

    I am using PyTorch 1.0.1, CUDA 9, two RTX 2080 Ti to run the 'train.py' since I see you use Data Parallel module to support multi-GPUs training. However, I encountered and the trackbacks are here:

    Traceback (most recent call last): File "train.py", line 171, in main() File "train.py", line 167, in main train_net(args) File "train.py", line 64, in train_net logger=logger) File "train.py", line 103, in train alpha_out = model(img) # [N, 3, 320, 320] File "/home/mingfu/anaconda3/envs/tensorflow_gpu/lib/python3.6/site-packages/torch/nn/modules/module.py", line 489, in call result = self.forward(*input, **kwargs) File "/home/mingfu/anaconda3/envs/tensorflow_gpu/lib/python3.6/site-packages/torch/nn/parallel/data_parallel.py", line 143, in forward outputs = self.parallel_apply(replicas, inputs, kwargs) File "/home/mingfu/anaconda3/envs/tensorflow_gpu/lib/python3.6/site-packages/torch/nn/parallel/data_parallel.py", line 153, in parallel_apply return parallel_apply(replicas, inputs, kwargs, self.device_ids[:len(replicas)]) File "/home/mingfu/anaconda3/envs/tensorflow_gpu/lib/python3.6/site-packages/torch/nn/parallel/parallel_apply.py", line 83, in parallel_apply raise output File "/home/mingfu/anaconda3/envs/tensorflow_gpu/lib/python3.6/site-packages/torch/nn/parallel/parallel_apply.py", line 59, in _worker output = module(*input, **kwargs) File "/home/mingfu/anaconda3/envs/tensorflow_gpu/lib/python3.6/site-packages/torch/nn/modules/module.py", line 489, in call result = self.forward(*input, **kwargs) File "/home/mingfu/Deep-Image-Matting-v2/models.py", line 127, in forward up4 = self.up4(up5, indices_4, unpool_shape4) File "/home/mingfu/anaconda3/envs/tensorflow_gpu/lib/python3.6/site-packages/torch/nn/modules/module.py", line 489, in call result = self.forward(*input, **kwargs) File "/home/mingfu/Deep-Image-Matting-v2/models.py", line 87, in forward outputs = self.conv(outputs) File "/home/mingfu/anaconda3/envs/tensorflow_gpu/lib/python3.6/site-packages/torch/nn/modules/module.py", line 489, in call result = self.forward(*input, **kwargs) File "/home/mingfu/Deep-Image-Matting-v2/models.py", line 43, in forward outputs = self.cbr_unit(inputs) File "/home/mingfu/anaconda3/envs/tensorflow_gpu/lib/python3.6/site-packages/torch/nn/modules/module.py", line 489, in call result = self.forward(*input, **kwargs) File "/home/mingfu/anaconda3/envs/tensorflow_gpu/lib/python3.6/site-packages/torch/nn/modules/container.py", line 92, in forward input = module(input) File "/home/mingfu/anaconda3/envs/tensorflow_gpu/lib/python3.6/site-packages/torch/nn/modules/module.py", line 489, in call result = self.forward(*input, **kwargs) File "/home/mingfu/anaconda3/envs/tensorflow_gpu/lib/python3.6/site-packages/torch/nn/modules/conv.py", line 320, in forward self.padding, self.dilation, self.groups) RuntimeError: cuDNN error: CUDNN_STATUS_EXECUTION_FAILED

    I have tested the DATA PARALLELISM using the example here and it works well.

    opened by wuyujack 3
Owner
Yang Liu
Algorithm engineer
Yang Liu
VGGFace2-HQ - A high resolution face dataset for face editing purpose

The first open source high resolution dataset for face swapping!!! A high resolution version of VGGFace2 for academic face editing purpose

Naiyuan Liu 232 Dec 29, 2022
[NeurIPS 2021] “Improving Contrastive Learning on Imbalanced Data via Open-World Sampling”,

Improving Contrastive Learning on Imbalanced Data via Open-World Sampling Introduction Contrastive learning approaches have achieved great success in

VITA 24 Dec 17, 2022
Super Pix Adv - Offical implemention of Robust Superpixel-Guided Attentional Adversarial Attack (CVPR2020)

Super_Pix_Adv Offical implemention of Robust Superpixel-Guided Attentional Adver

DLight 8 Oct 26, 2022
This codebase is the official implementation of Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization (NeurIPS2021, Spotlight)

Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization This codebase is the official implementation of Test-Time Classifier A

47 Dec 28, 2022
[CVPR'21] Multi-Modal Fusion Transformer for End-to-End Autonomous Driving

TransFuser This repository contains the code for the CVPR 2021 paper Multi-Modal Fusion Transformer for End-to-End Autonomous Driving. If you find our

695 Jan 05, 2023
Source code for the paper "Periodic Traveling Waves in an Integro-Difference Equation With Non-Monotonic Growth and Strong Allee Effect"

Source code for the paper "Periodic Traveling Waves in an Integro-Difference Equation With Non-Monotonic Growth and Strong Allee Effect" by Michael Ne

M Nestor 1 Apr 19, 2022
Official implementation for the paper: Multi-label Classification with Partial Annotations using Class-aware Selective Loss

Multi-label Classification with Partial Annotations using Class-aware Selective Loss Paper | Pretrained models Official PyTorch Implementation Emanuel

99 Dec 27, 2022
Predict the latency time of the deep learning models

Deep Neural Network Prediction Step 1. Genernate random parameters and Run them sequentially : $ python3 collect_data.py -gp -ep -pp -pl pooling -num

QAQ 1 Nov 12, 2021
Simple API for UCI Machine Learning Dataset Repository (search, download, analyze)

A simple API for working with University of California, Irvine (UCI) Machine Learning (ML) repository Table of Contents Introduction About Page of the

Tirthajyoti Sarkar 223 Dec 05, 2022
Blind visual quality assessment on 360° Video based on progressive learning

Blind visual quality assessment on omnidirectional or 360 video (ProVQA) Blind VQA for 360° Video via Progressively Learning from Pixels, Frames and V

5 Jan 06, 2023
PyTorch code for Vision Transformers training with the Self-Supervised learning method DINO

Self-Supervised Vision Transformers with DINO PyTorch implementation and pretrained models for DINO. For details, see Emerging Properties in Self-Supe

Facebook Research 4.2k Jan 03, 2023
YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4

YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4. YOLTv4 is designed to detect objects in aerial or satellite imagery in arbitraril

Adam Van Etten 161 Jan 06, 2023
Arch-Net: Model Distillation for Architecture Agnostic Model Deployment

Arch-Net: Model Distillation for Architecture Agnostic Model Deployment The official implementation of Arch-Net: Model Distillation for Architecture A

MEGVII Research 22 Jan 05, 2023
PSANet: Point-wise Spatial Attention Network for Scene Parsing, ECCV2018.

PSANet: Point-wise Spatial Attention Network for Scene Parsing (in construction) by Hengshuang Zhao*, Yi Zhang*, Shu Liu, Jianping Shi, Chen Change Lo

Hengshuang Zhao 217 Oct 30, 2022
An original implementation of "MetaICL Learning to Learn In Context" by Sewon Min, Mike Lewis, Luke Zettlemoyer and Hannaneh Hajishirzi

MetaICL: Learning to Learn In Context This includes an original implementation of "MetaICL: Learning to Learn In Context" by Sewon Min, Mike Lewis, Lu

Meta Research 141 Jan 07, 2023
code for our BMVC 2021 paper "HCV: Hierarchy-Consistency Verification for Incremental Implicitly-Refined Classification"

HCV_IIRC code for our BMVC 2021 paper HCV: Hierarchy-Consistency Verification for Incremental Implicitly-Refined Classification by Kai Wang, Xialei Li

kai wang 13 Oct 03, 2022
Your interactive network visualizing dashboard

Your interactive network visualizing dashboard Documentation: Here What is Jaal Jaal is a python based interactive network visualizing tool built usin

Mohit 177 Jan 04, 2023
This project intends to use SVM supervised learning to determine whether or not an individual is diabetic given certain attributes.

Diabetes Prediction Using SVM I explore a diabetes prediction algorithm using a Diabetes dataset. Using a Support Vector Machine for my prediction alg

Jeff Shen 1 Jan 14, 2022
State-Relabeling Adversarial Active Learning

State-Relabeling Adversarial Active Learning Code for SRAAL [2020 CVPR Oral] Requirements torch = 1.6.0 numpy = 1.19.1 tqdm = 4.31.1 AL Results The

10 Jul 14, 2022
Pytorch implementation of 'Fingerprint Presentation Attack Detector Using Global-Local Model'

RTK-PAD This is an official pytorch implementation of 'Fingerprint Presentation Attack Detector Using Global-Local Model', which is accepted by IEEE T

6 Aug 01, 2022