A pure PyTorch implementation of the loss described in "Online Segment to Segment Neural Transduction"

Overview

ssnt-loss

ℹ️ This is a WIP project. the implementation is still being tested.

A pure PyTorch implementation of the loss described in "Online Segment to Segment Neural Transduction" https://arxiv.org/abs/1609.08194.

Usage

There are two versions, a normal version and a memory efficient version. They should give the same output, please inform me if they don't.

>> target_mask = targets.ne(pad) # (B, T) >>> targets = targets[target_mask] # (T_flat,) >>> log_probs = log_probs[target_mask] # (T_flat, S, V) Args: log_probs (Tensor): Word prediction log-probs, should be output of log_softmax. tensor with shape (T_flat, S, V) where T_flat is the summation of all target lengths, S is the maximum number of input frames and V is the vocabulary of labels. targets (Tensor): Tensor with shape (T_flat,) representing the reference target labels for all samples in the minibatch. log_p_choose (Tensor): emission log-probs, should be output of F.logsigmoid. tensor with shape (T_flat, S) where T_flat is the summation of all target lengths, S is the maximum number of input frames. source_lengths (Tensor): Tensor with shape (N,) representing the number of frames for each sample in the minibatch. target_lengths (Tensor): Tensor with shape (N,) representing the length of the transcription for each sample in the minibatch. neg_inf (float, optional): The constant representing -inf used for masking. Default: -1e4 reduction (string, optional): Specifies reduction. suppoerts mean / sum. Default: None. """">
def ssnt_loss_mem(
    log_probs: Tensor,
    targets: Tensor,
    log_p_choose: Tensor,
    source_lengths: Tensor,
    target_lengths: Tensor,
    neg_inf: float = -1e4,
    reduction="mean",
):
    """The memory efficient implementation concatenates along the targets
    dimension to reduce wasted computation on padding positions.

    Assuming the summation of all targets in the batch is T_flat, then
    the original B x T x ... tensor is reduced to T_flat x ...

    The input tensors can be obtained by using target mask:
    Example:
        >>> target_mask = targets.ne(pad)   # (B, T)
        >>> targets = targets[target_mask]  # (T_flat,)
        >>> log_probs = log_probs[target_mask]  # (T_flat, S, V)

    Args:
        log_probs (Tensor): Word prediction log-probs, should be output of log_softmax.
            tensor with shape (T_flat, S, V)
            where T_flat is the summation of all target lengths,
            S is the maximum number of input frames and V is
            the vocabulary of labels.
        targets (Tensor): Tensor with shape (T_flat,) representing the
            reference target labels for all samples in the minibatch.
        log_p_choose (Tensor): emission log-probs, should be output of F.logsigmoid.
            tensor with shape (T_flat, S)
            where T_flat is the summation of all target lengths,
            S is the maximum number of input frames.
        source_lengths (Tensor): Tensor with shape (N,) representing the
            number of frames for each sample in the minibatch.
        target_lengths (Tensor): Tensor with shape (N,) representing the
            length of the transcription for each sample in the minibatch.
        neg_inf (float, optional): The constant representing -inf used for masking.
            Default: -1e4
        reduction (string, optional): Specifies reduction. suppoerts mean / sum.
            Default: None.
    """

Minimal example

import torch
import torch.nn as nn
import torch.nn.functional as F
from ssnt_loss import ssnt_loss_mem, lengths_to_padding_mask
B, S, H, T, V = 2, 100, 256, 10, 2000

# model
transcriber = nn.LSTM(input_size=H, hidden_size=H, num_layers=1).cuda()
predictor = nn.LSTM(input_size=H, hidden_size=H, num_layers=1).cuda()
joiner_trans = nn.Linear(H, V, bias=False).cuda()
joiner_alpha = nn.Sequential(
    nn.Linear(H, 1, bias=True),
    nn.Tanh()
).cuda()

# inputs
src_embed = torch.rand(B, S, H).cuda().requires_grad_()
tgt_embed = torch.rand(B, T, H).cuda().requires_grad_()
targets = torch.randint(0, V, (B, T)).cuda()
adjust = lambda x, goal: x * goal // x.max()
source_lengths = adjust(torch.randint(1, S+1, (B,)).cuda(), S)
target_lengths = adjust(torch.randint(1, T+1, (B,)).cuda(), T)

# forward
src_feats, (h1, c1) = transcriber(src_embed.transpose(1, 0))
tgt_feats, (h2, c2) = predictor(tgt_embed.transpose(1, 0))

# memory efficient joint
mask = ~lengths_to_padding_mask(target_lengths)
lattice = F.relu(
    src_feats.transpose(0, 1).unsqueeze(1) + tgt_feats.transpose(0, 1).unsqueeze(2)
)[mask]
log_alpha = F.logsigmoid(joiner_alpha(lattice)).squeeze(-1)
lattice = joiner_trans(lattice).log_softmax(-1)

# normal ssnt loss
loss = ssnt_loss_mem(
    lattice,
    targets[mask],
    log_alpha,
    source_lengths=source_lengths,
    target_lengths=target_lengths,
    reduction="sum"
) / (B*T)
loss.backward()
print(loss.item())

Note

This implementation is based on the simplifying derivation proposed for monotonic attention, where they use parallelized cumsum and cumprod to compute the alignment. Based on the similarity of SSNT and monotonic attention, we can infer that the forward variable alpha(i,j) can be computed similarly.

Feel free to contact me if there are bugs in the code.

Reference

Owner
張致強
張致強
EMNLP 2020 - Summarizing Text on Any Aspects

Summarizing Text on Any Aspects This repo contains preliminary code of the following paper: Summarizing Text on Any Aspects: A Knowledge-Informed Weak

Bowen Tan 35 Nov 14, 2022
Code for One-shot Talking Face Generation from Single-speaker Audio-Visual Correlation Learning (AAAI 2022)

One-shot Talking Face Generation from Single-speaker Audio-Visual Correlation Learning (AAAI 2022) Paper | Demo Requirements Python = 3.6 , Pytorch

FuxiVirtualHuman 84 Jan 03, 2023
Asymmetric metric learning for knowledge transfer

Asymmetric metric learning This is the official code that enables the reproduction of the results from our paper: Asymmetric metric learning for knowl

20 Dec 06, 2022
Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021.

NL-CSNet-Pytorch Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021. Note: this repo only shows the strategy of

WenxueCui 7 Nov 07, 2022
Image Segmentation Evaluation

Image Segmentation Evaluation Martin Keršner, [email protected] Evaluation

Martin Kersner 273 Oct 28, 2022
A PyTorch implementation of the Transformer model in "Attention is All You Need".

Attention is all you need: A Pytorch Implementation This is a PyTorch implementation of the Transformer model in "Attention is All You Need" (Ashish V

Yu-Hsiang Huang 7.1k Jan 04, 2023
CSPML (crystal structure prediction with machine learning-based element substitution)

CSPML (crystal structure prediction with machine learning-based element substitution) CSPML is a unique methodology for the crystal structure predicti

8 Dec 20, 2022
Random Erasing Data Augmentation. Experiments on CIFAR10, CIFAR100 and Fashion-MNIST

Random Erasing Data Augmentation =============================================================== black white random This code has the source code for

Zhun Zhong 654 Dec 26, 2022
This repository contains the code for EMNLP-2021 paper "Word-Level Coreference Resolution"

Word-Level Coreference Resolution This is a repository with the code to reproduce the experiments described in the paper of the same name, which was a

79 Dec 27, 2022
Open AI's Python library

OpenAI Python Library The OpenAI Python library provides convenient access to the OpenAI API from applications written in the Python language. It incl

Pavan Ananth Sharma 3 Jul 10, 2022
A hybrid SOTA solution of LiDAR panoptic segmentation with C++ implementations of point cloud clustering algorithms. ICCV21, Workshop on Traditional Computer Vision in the Age of Deep Learning

ICCVW21-TradiCV-Survey-of-LiDAR-Cluster Motivation In contrast to popular end-to-end deep learning LiDAR panoptic segmentation solutions, we propose a

YimingZhao 103 Nov 22, 2022
PyTorch implementation of our method for adversarial attacks and defenses in hyperspectral image classification.

Self-Attention Context Network for Hyperspectral Image Classification PyTorch implementation of our method for adversarial attacks and defenses in hyp

22 Dec 02, 2022
KIDA: Knowledge Inheritance in Data Aggregation

KIDA: Knowledge Inheritance in Data Aggregation This project releases our 1st place solution on NeurIPS2021 ML4CO Dual Task. Slide and model weights a

24 Sep 08, 2022
Official implementation of particle-based models (GNS and DPI-Net) on the Physion dataset.

Physion: Evaluating Physical Prediction from Vision in Humans and Machines [paper] Daniel M. Bear, Elias Wang, Damian Mrowca, Felix J. Binder, Hsiao-Y

Hsiao-Yu Fish Tung 18 Dec 19, 2022
[MICCAI'20] AlignShift: Bridging the Gap of Imaging Thickness in 3D Anisotropic Volumes

AlignShift NEW: Code for our new MICCAI'21 paper "Asymmetric 3D Context Fusion for Universal Lesion Detection" will also be pushed to this repository

Medical 3D Vision 42 Jan 06, 2023
Notification Triggers for Python

Notipyer Notification triggers for Python Send async email notifications via Python. Get updates/crashlogs from your scripts with ease. Installation p

Chirag Jain 17 May 16, 2022
Galaxy images labelled by morphology (shape). Aimed at ML development and teaching

Galaxy images labelled by morphology (shape). Aimed at ML debugging and teaching.

Mike Walmsley 14 Nov 28, 2022
PyTorch Implementation of Realtime Multi-Person Pose Estimation project.

PyTorch Realtime Multi-Person Pose Estimation This is a pytorch version of Realtime_Multi-Person_Pose_Estimation, origin code is here Realtime_Multi-P

Dave Fang 157 Nov 12, 2022
🧑‍🔬 verify your TEAL program by experiment and observation

Graviton - Testing TEAL with Dry Runs Tutorial Local Installation The following instructions assume that you have make available in your local environ

Algorand 18 Jan 03, 2023
A Real-World Benchmark for Reinforcement Learning based Recommender System

RL4RS: A Real-World Benchmark for Reinforcement Learning based Recommender System RL4RS is a real-world deep reinforcement learning recommender system

121 Dec 01, 2022